Background Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). Results Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. Conclusion The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.
Salicornia europaea is one of the world’s salt-tolerant plant species and is recognized as a model plant for studying the metabolism and molecular mechanisms of halophytes under salinity. To investigate the metabolic responses to salinity stress in S. europaea, this study performed a widely targeted metabolomic analysis after analyzing the physiological characteristics of plants exposed to various NaCl treatments. S. europaea exhibited excellent salt tolerance and could withstand extremely high NaCl concentrations, while lower NaCl conditions (50 and 100 mM) significantly promoted growth by increasing tissue succulence and maintaining a relatively stable K+ concentration. A total of 552 metabolites were detected, 500 of which were differently accumulated, mainly consisting of lipids, organic acids, saccharides, alcohols, amino acids, flavonoids, phenolic acids, and alkaloids. Sucrose, glucose, p-proline, quercetin and its derivatives, and kaempferol derivatives represented core metabolites that are responsive to salinity stress. Glycolysis, flavone and flavonol biosynthesis, and phenylpropanoid biosynthesis were considered as the most important pathways responsible for salt stress response by increasing the osmotic tolerance and antioxidant activities. The high accumulation of some saccharides, flavonoids, and phenolic acids under 50 mM NaCl compared with 300 mM NaCl might contribute to the improved salt tolerance under the 50 mM NaCl treatment. Furthermore, quercetin, quercetin derivatives, and kaempferol derivatives showed varied change patterns in the roots and shoots, while coumaric, caffeic, and ferulic acids increased significantly in the roots, implying that the coping strategies in the shoots and roots varied under salinity stress. These findings lay the foundation for further analysis of the mechanism underlying the response of S. europaea to salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.