dThe emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Allergic conjunctivitis has been reported to be increasing in prevalence in the United States. It significantly impacts patient quality of life and reduces their productivity. It has been noted that nasal and ocular symptoms are equally bothersome in the majority of patients. Despite the development of new therapeutic interventions, ocular allergy is often underdiagnosed and undertreated. This article outlines current best practices regarding diagnosis and treatment of allergic conjunctivitis; suggests criteria for referral to a colleague with different expertise; and provides an algorithm for step recommendations including treatment with antihistamines, mast cell stabilizers, corticosteroids, nonsteroidal anti-inflammatory drugs, and immunotherapy.
The interaction between natural killer (NK) cell and dendritic cell (DC), two important cellular components of innate immunity, started to be elucidated in the last years. The crosstalk between NK cells and DC, which leads to NK cell activation, DC maturation, or apoptosis, involves cell-cell contacts and soluble factors. This interaction either in the periphery or in the secondary lymphoid organs acts as a key player linking innate and adaptive immune responses to microbial stimuli. This review focuses on the mechanisms of NK-DC interaction and their relevance in antimicrobial responses. We specifically aim to emphasize the ability of various microbial infections to differently influence NK-DC crosstalk thereby contributing to distinct adaptive immune response.
BackgroundThe Antibiotic Resistance Monitoring in Ocular micRoorganisms study is an ongoing surveillance study that tracks antibiotic resistance among bacterial isolates from ocular infections across the United States. We report antibiotic resistance rates and trends from 2009 through 2016.Materials and methodsStaphylococcus aureus, coagulase-negative staphylococci (CoNS), Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae from various ocular infections were obtained from participating United States centers. Isolates were sent to a central laboratory for determination of antibiotic resistance profiles. Minimum inhibitory concentrations were determined by broth microdilution according to the Clinical and Laboratory Standards Institute for drugs from more than ten antibiotic classes, and isolates were classified as susceptible or resistant based on systemic breakpoints, wherever available. Resistance rates were also evaluated based on decade of patient life and longitudinally over the 8-year time period.ResultsA total of 1,695 S. aureus, 1,475 CoNS, 474 S. pneumoniae, 586 H. influenzae, and 599 P. aeruginosa were collected from 87 sites. Resistance was high among staphylococci and pneumococci, with methicillin resistance detected in 621 (36.6%) S. aureus and 717 (48.6%) CoNS isolates. Multidrug resistance (≥3 drug classes) was observed among staphylococci, particularly in methicillin-resistant (MR) isolates (MR S. aureus [MRSA]: 76.2%; MR CoNS [MRCoNS]: 73.5%). Differences in methicillin resistance among staphylococci were observed based on patient age, with higher rates observed in older patients (P<0.0001). For certain organism-antibiotic combinations, there were significant changes in resistance over time, including a decrease in methicillin resistance among S. aureus (but not CoNS); no notable trends were observed for S. pneumoniae.ConclusionAntibiotic resistance was prevalent among gram-positive organisms, and MR staphylococcal isolates were more likely to be multidrug resistant. Although a small decrease in methicillin resistance was observed among S. aureus over time, the continued high prevalence of in vitro methicillin resistance should be considered when treating patients with ocular infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.