Candida auris is a novel and emerging pathogenic yeast which represents a serious global health threat. Since its first description in Japan 2009, it has been associated with large hospital outbreaks all over the world and is often resistant to more than one antifungal drug class. To date, five C. auris isolates have been detected in Austria. Morphological characterization and antifungal susceptibility profiles against echinocandins, azoles, polyenes and pyrimidines, as well as the new antifungals ibrexafungerp and manogepix, were determined. In order to assess pathogenicity of these isolates, an infection model in Galleria mellonella was performed and whole genome sequencing (WGS) analysis was conducted to determine the phylogeographic origin. We could characterize four isolates as South Asian clade I and one isolate as African clade III. All of them had elevated minimal inhibitory concentrations to at least two different antifungal classes. The new antifungal manogepix showed high in vitro efficacy against all five C. auris isolates. One isolate, belonging to the African clade III, showed an aggregating phenotype, while the other isolates belonging to South Asian clade I were non-aggregating. In the Galleria mellonella infection model, the isolate belonging to African clade III exhibited the lowest in vivo pathogenicity. As the occurrence of C. auris increases globally, it is important to raise awareness to prevent transmission and hospital outbreaks.
Antifungal susceptibility testing is important in guiding patient therapy due to an increasing number of resistant Candida isolates. In the clinical strain collection of the Austrian resistance report (AURES), a high number of micafungin-resistant C. albicans isolates (18.2% 49/269) was detected in seven different centres in Austria from 2011–2016. Most of these isolates showed a micafungin MIC value that was just above the clinical breakpoint (CB) established by EUCAST (0.016 mg/L). The aim of this study was to analyse whether C. albicans strains showing a micafungin MIC value of 1–2 dilutions above the CB (0.032 mg/L and 0.064 mg/L) are associated with mutations in FKS1 hotspot (HS) regions. 115 C. albicans candidemia strains showing a micafungin MIC one or two dilutions above the EUCAST CB (0.032 mg/L and 0.064 mg/L) were categorized as borderline resistant and screened for mutations in FKS1 HS1, HS2, and HS3 regions, which are known locations for the development of echinocandin resistance. For this purpose, we implemented targeted resequencing utilizing a next generation sequencing technology. No missense mutations could be detected in FKS1 HS1, HS2, and HS3 in any of the 115 isolates, which indicated that resistance conferred by alteration of FKS1 seems unlikely.
Objectives: This study investigated the synergistic in vitro and in vivo activity of cefazolin plus fosfomycin against methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA) to provide the basis for a potential treatment alternative.Methods: Antimicrobial susceptibility and in vitro synergy tests were performed with five MSSA and five MRSA isolates using the broth microdilution and chequerboard assays, respectively. The in vivo efficacy of cefazolin plus fosfomycin for the treatment of MRSA infections was assessed using the Galleria mellonella survival assay.Results: Using fractional inhibitory concentration index (FICI), the evaluated combination of cefazolin plus fosfomycin showed synergistic in vitro activity against all MSSA and MRSA isolates tested. In addition, cefazolin susceptibility was recovered in all MRSA isolates except one fosfomycin-resistant strain when combined with fosfomycin at readily achievable concentrations. The G. mellonella survival assay demonstrated highly synergistic in vivo activity of cefazolin plus fosfomycin, resulting in a 44–52% reduction in mortality when compared to cefazolin-alone and fosfomycin-alone, respectively.Conclusion: If susceptibility to fosfomycin is either confirmed or can be assumed based on local resistance patterns, combination therapy with cefazolin plus fosfomycin could be a valuable treatment option for empirical as well as targeted therapy of S. aureus and MRSA infections. Future studies proving the clinical significance of this combination therapy are therefore warranted.
Background: Staphylococcus aureus (S. aureus), a leading cause of bacteremia and infective endocarditis, exploits the human coagulation system by using a wide range of specific virulence factors. However, the impact of these host-pathogen interactions on the outcome of patients with Staphylococcus aureus bacteremia (SAB) remains unclear. Methods: A total of 178 patients with S. aureus bacteremia were included and analyzed regarding bacterial factors (coa gene size, vWbp, clfA, clfB, fnbA, fnbB, fib) and clinical parameters. A stepwise multivariate Cox regression model and a Partitioning Around Medoids (PAM) cluster algorithm were used for statistical analysis. Results: Patients' risk factors for 28-day mortality were creatinine (OR 1.49, p < 0.001), age (OR 1.9, p < 0.002), fibrinogen (OR 0.44, p < 0.004), albumin (OR 0.63, p < 0.02), hemoglobin (OR 0.59, p < 0.03), and CRP (OR 1.72, p < 0.04). Five distinct bacterial clusters with different mortality rates were unveiled, whereof two showed a 2-fold increased mortality and an accumulation of specific coagulase gene sizes, 547-base pairs and 660-base pairs. Conclusions: Based on the data obtained in the present study an association of coagulase gene size and fib regarding 28-day mortality was observed in patients with S. aureus bloodstream infections. Further animal and prospective clinical studies are needed to confirm our preliminary findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.