Chronic stress produces structural changes and neuronal damage especially in the hippocampus. Because neurotrophic factors affect neuron survival, we questioned whether they might be relevant to the heightened vulnerability of hippocampal neurons following stress. To begin investigating this possibility, we examined the effects of immobilization stress (2 hr/d) on the expression of neurotrophic factors in rat brains using in situ hybridization. We found that single or repeated immobilization markedly reduced brain-derived neurotrophic factor (BDNF) mRNA levels in the dentate gyrus and hippocampus. In contrast, NT-3 mRNA levels were increased in the dentate gyrus and hippocampus in response to repeated but not acute stress. Stress did not affect the expression of neurotrophin-4, or tyrosine receptor kinases (trkB or C). Corticosterone negative feedback may have contributed in part to the stress-induced decreases in BDNF mRNA levels, but stress still decreased BDNF in the dentate gyrus in adrenalectomized rats suggesting that additional components of the stress response must also contribute to the observed changes in BDNF. However, corticosterone-mediated increases in NT-3 mRNA expression appeared to be primarily responsible for the effects of stress on NT-3. These findings demonstrate that BDNF and NT-3 are stress-responsive genes and raise the possibility that alterations in the expression of these or other growth factors might be important in producing some of the physiological and pathophysiological effects of stress in the hippocampus.
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.