All frogs are assumed to jump in a similar manner by rapidly extending hindlimbs during the propulsive phase and rotating the limbs forward during flight in order to land forelimbs first. However, studies of jumping behavior are lacking in the most primitive living frogs of the family Leiopelmatidae. These semi-aquatic or terrestrial anurans retain a suite of plesiomorphic morphological features and are unique in using an asynchronous (trot-like) rather than synchronous "frog-kick" swimming gait of other frogs. We compared jumping behavior in leiopelmatids to more derived frogs and found that leiopelmatids maintain extended hindlimbs throughout flight and landing phases and do not land on adducted forelimbs. These "belly-flop" landings limit the ability for repeated jumps and are consistent with a riparian origin of jumping in frogs. The unique behavior of leiopelmatids shows that frogs evolved jumping before they perfected landing. Moreover, an inability to rapidly cycle the limbs may provide a functional explanation for the absence of synchronous swimming in leiopelmatids.
Ancestral frogs underwent anatomical shifts including elongation of the hindlimbs and pelvis and reduction of the tail and vertebral column that heralded the transition to jumping as a primary mode of locomotion. Jumping has been hypothesized to have evolved in a step-wise fashion with basal frogs taking-off with synchronous hindlimb extension and crash-landing on their bodies, and then their limbs move forward. Subsequently, frogs began to recycle the forelimbs forward earlier in the jump to control landing. Frogs with forelimb landing radiated into many forms, locomotor modes, habitats, and niches with controlled landing thought to improve escape behavior. While the biology of take-off behavior has seen considerable study, interspecific comparisons of take-off and landing behavior are limited. In order to understand the evolution of jumping and controlled landing in frogs, data are needed on the movements of the limbs and body across an array of taxa. Here, we present the first description and comparison of kinematics of the hindlimbs, forelimbs and body during take-off and landing in relation to ground reaction forces in four frog species spanning the frog phylogeny. The goal of this study is to understand what interspecific differences reveal about the evolution of take-off and controlled landing in frogs. We provide the first comparative description of the entire process of jumping in frogs. Statistical comparisons identify both homologous behaviors and significant differences among species that are used to map patterns of trait evolution and generate hypotheses regarding the functional evolution of take-off and landing in frogs.
The rodent family Sciuridae (squirrels) presents an ideal system for examining the morphological, behavioural and ecological correlates of locomotor novelty. Ancestrally, sciurids were arboreal, a condition retained by modern tree squirrels. Two major transitions from the arboreal condition are hypothesized to have occurred in the sciurid clade: (1) flying squirrels evolved gliding from arboreal leaping (parachuting) and (2) chipmunks and ground squirrels became semiarboreal/terrestrial. This study examines morphology, locomotor behaviour and microhabitat use under controlled laboratory conditions in three North American sciurids: eastern chipmunk Tamias striatus, red squirrel Tamiasciurus hudsonicus and southern flying squirrel Glaucomys volans. Multivariate space was defined using a series of morphological measurements and by continuously sampling individuals moving under identical conditions in a naturalistic enclosure, controlling for the proximate effects of microhabitat structure. Morphospace was characterized by a contrast between proximal and distal limb elements -flying squirrels exhibited elongated forelimbs and shanks and shortened forefeet and hindfeet, while chipmunks exhibited the opposite pattern. Ethospace was characterized by a contrast between aerial locomotion in flying squirrels and groundbased locomotion in chipmunks. In both instances, red squirrels occupied intermediate positions, as predicted on the basis of retention of ancestral features. Despite significant differences among species at morphological and behavioural levels, ecospace was characterized by overlap between flying squirrels and red squirrels in the use of high supports, and between flying squirrels and chipmunks in the use of large-diameter supports. The lack of concordance at the ecological level underscores the difficulty in making predictions based solely upon organismal design.
Summary While most frogs maximize jump distance as an escape behaviour, toads have traded jump distance for endurance with a strategy of hopping repeatedly. This strategy has enabled toads to expand across the continents as one of the most diverse groups of anurans. Multiple studies have revealed physiological endurance adaptations for sustained hopping in toads, however, the kinematics of their sequential hopping behaviour, per se, has not been studied. We compared kinematics and forces of single hops and multiple hopping sequences and quantified field performance of hopping behaviours in free ranging toads of three species and discovered a novel aspect of locomotion adaptation that adds another facet to their exceptional terrestrial locomotor abilities. We found that bouts of repeated hopping are actually a series of bounding strides where toads rotate on their hands and then land on their extended their feet and jump again without stopping. In addition, free‐ranging toads appear to use bounding locomotion more frequently than single hops. Bounding in toads has the advantage of maintaining velocity and producing longer jump distances. In comparison to single hops, cyclic bounding steps reduce energy expenditure and appear to provide limb loading dynamics better suited for potential cycling of elastic energy from stride to stride than would be possible with repeated single hops. This is the first case of the common use of a bounding gait outside of mammals. Bounding adds a key terrestrial locomotor trait to the toad's phenotype that may help explain their history of global expansion and the challenges to modern faunas as introduced toads rapidly invade new ecosystems today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.