Observational studies have determined hyperphosphatemia to be a cardiovascular risk factor in chronic kidney disease. Mechanistic studies have elucidated that hyperphosphatemia is a direct stimulus to vascular calcification, which is one cause of morbid cardiovascular events contributing to the excess mortality of chronic kidney disease. This review describes the pathobiology of hyperphosphatemia that develops as a consequence of positive phosphate balance in chronic kidney disease and the mechanisms by which hyperphosphatemia acts on neointimal vascular cells that are stimulated to mineralize in chronic kidney disease. The characterization of hyperphosphatemia of chronic kidney disease as a distinct syndrome in clinical medicine with unique disordered skeletal remodeling, heterotopic mineralization and cardiovascular morbidity is presented.
Abstract. Chronic renal failure is complicated by high cardiovascular mortality. One key contributor to this mortality is vascular calcification, for which no therapy currently exists. Bone morphogenetic protein 7 is an essential renal morphogen that maintains renal tubular differentiation in the adult and is downregulated in renal failure. Several studies have demonstrated its efficacy in treating various renal diseases in rodents, and it was hypothesized that it would also be an effective treatment of vascular calcification in this setting. Uremia was imposed on LDL receptor null mice (a model of atherosclerosis), which were then treated with bone morphogenetic protein 7 for 15 wk. Uremic animals had increased vascular calcification by histology and chemical analysis. Calcification in treated animals was similar to or less than non-uremic control animals. Cells exhibiting an osteoblast-like phenotype in the vessel wall may be important in the etiology of vascular calcification. Expression of osteocalcin was assessed as a marker of osteoblastic function, and it is shown that it is increased in untreated uremic animals but downregulated to levels similar to non-uremic control animals with treatment.
LDL receptor (LDLR)-null mice fed high-fat/cholesterol diets, a model of the metabolic syndrome, have vascular calcification (VC) worsened by chronic kidney disease (CKD) and ameliorated by bone morphogenetic protein-7 (BMP-7), an efficacious agent in treating animal models of renal osteodystrophy. Here, LDLR؊/؊ high-fat-fed mice without CKD were shown to have significant reductions in bone formation rates, associated with increased VC and hyperphosphatemia. Superimposing CKD resulted in a low turnover osteodystrophy, whereas VC worsened and hyperphosphatemia persisted. BMP-7 treatment corrected the hyperphosphatemia, corrected the osteodystrophy, and prevented VC, compatible with skeletal phosphate deposition leading to reduced plasma phosphate and removal of a major stimulus to VC. A pathologic link between abnormal bone mineralization and VC through the serum phosphorus was supported by the partial effectiveness of directly reducing the serum phosphate by a phosphate binder that had no skeletal action. Thus, in this model of the metabolic syndrome with CKD, a reduction in bone-forming potential of osteogenic cells leads to low bone turnover rates, producing hyperphosphatemia and VC, processes ameliorated by the skeletal anabolic agent BMP-7, in part through deposition of phosphate and increased bone formation. C ardiovascular (CV) mortality in patients with chronic kidney disease (CKD) is extremely high (1,2). Conventional risk factors that are characteristic of the metabolic syndrome (3), such as hypertension, dyslipidemia, insulin resistance, and overt diabetes, are highly prevalent in CKD, but other CV risk factors with additive affects that are more specific to the uremic milieu have also been identified (4). One such is the presence of vascular calcification (VC) (5), a form of heterotopic mineralization that is predictive of CV mortality (6,7) and is both common and severe in CKD (8). J Am Soc NephrolThe pathogenesis of VC in CKD remains under investigation, but hyperphosphatemia is an important risk factor for both VC and CV mortality (9,10). VC and CV mortality are also associated with other abnormalities of calcium and phosphate homeostasis, including hypercalcemia, elevated calcium and phosphate ion products, vitamin D therapy, and hyperparathyroidism (9,10), and these findings suggest a link with renal osteodystrophy (ROD).ROD is virtually ubiquitous in CKD, characterized by a spectrum of histologic abnormalities of bone that contribute to the biochemical abnormalities discussed above (11). At one end of the spectrum, osteitis fibrosa is a high-turnover state driven by secondary hyperparathyroidism, characterized by poorly differentiated osteoblast precursors manifesting a fibroblastic phenotype, and stimulating increased osteoclastic activity. This results in net bone resorption, fibrosis of the bone marrow space, and release of calcium and phosphate into the extracellular fluid (12). At the other end of the spectrum, adynamic bone disorder (ABD) is characterized by quiescent osteoblasts and osteo...
An apparent conflict exists between observational studies that suggest that vitamin D receptor (VDR) activators provide a survival advantage for patients with ESRD and other studies that suggest that they cause vascular calcification. In an effort to explain this discrepancy, we studied the effects of the VDR activators calcitriol and paricalcitol on aortic calcification in a mouse model of chronic kidney disease (CKD)-stimulated atherosclerotic cardiovascular mineralization. At dosages sufficient to correct secondary hyperparathyroidism, calcitriol and paricalcitol were protective against aortic calcification, but higher dosages stimulated aortic calcification. At protective dosages, the VDR activators reduced osteoblastic gene expression in the aorta, which is normally increased in CKD, perhaps explaining this inhibition of aortic calcification. Interpreting the results obtained using this model, however, is complicated by the adynamic bone disorder; both calcitriol and paricalcitol stimulated osteoblast surfaces and rates of bone formation. Therefore, the skeletal actions of the VDR activators may have contributed to their protection against aortic calcification. We conclude that low, clinically relevant dosages of calcitriol and paricalcitol may protect against CKD-stimulated vascular calcification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.