The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC 50 of ϳ0.5 M, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.Hepatitis C virus (HCV), 1 a positive strand RNA virus of the Flaviviridae family, is the major etiological agent of post-transfusion and sporadic non-A, non-B hepatitis (1). An estimated 2-3% of the world population is chronically infected with HCV, which causes significant liver disease, cirrhosis, and can eventually lead to the development of hepatocellular carcinoma. In infected cells, translation of the viral RNA yields a 3011-residue polyprotein chain (2-4), which is subsequently cleaved to generate envelope and core proteins, for assembly of new virus particles and nonstructural enzymes essential for viral replication (5-7). Studies using recombinant NS5B polymerase have provided direct evidence for RNA-dependent RNA polymerase activity (8, 9), and this catalytic activity has been confirmed to be required for infectivity in chimpanzees (10).NS5B polymerase contains a hydrophobic C-terminal domain thought to be responsible for anchoring the protein to mammalian cell membranes. Removal of the C-terminal 21 residues has been reported to facilitate protein isolation from Escherichia coli without compromising RdRp activity (11). The HCV RdRp initiates RNA synthesis preferentially from the 3Ј terminus of the template RNA (12, 13-15) but lacks specificity for HCV RNA in vitro, because it readily utilizes heterologous nonviral templates (8). Based on crystallographic studies of the enzyme containing C-terminal truncations (16, 17), the hydrophobic tail present in the full-length ...