We have previously reported immunocytochemical, biochemical, behavioral, and electrophysiological evidence for glutamatergic transmission through (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate receptors in hydra. We now report specific localization of the N-Methyl-D-aspartic acid receptor subunit 1 (NMDAR1) in epithelial, nerve, nematocytes, and interstitial cells of hydra. Macerates of tentacle/hypostome pieces of Hydra vulgaris were prepared on agar-coated slides, fixed with buffered formaldehyde/glutaraldehyde, and fluorescently labeled with monoclonal antibodies against mammalian NMDAR1. Negative controls omitted primary antibody. Digital images were recorded and analyzed. Specific localized and intense labeling was found in ectodermal battery cells, other epithelial cells, nematocytes, interstitial cells, and sensory and ganglionic nerve cells, and in battery cells was associated with enclosed nematocytes and neurons. The labeling of myonemes was more diffuse and less intense. In nerve and sensory cells, punctate labeling was prominent on cell bodies. These results are consistent with our earlier evidence for glutamatergic neurotransmission and kainate/NMDA regulation of stenotele discharge. They support other behavioral and biochemical evidence for a D-serine-sensitive, strychnine-insensitive, glycine receptor in hydra and suggest that the glutamatergic AMPA/kainate-NMDA system is an early evolved, phylogenetically old, behavioral control mechanism.
As a result of anthropogenic climate change, extreme climatic events have increased in frequency, severity and longevity. The consequences for community structure after a catastrophic event have been well studied. However, changes in ecosystem functioning that occur after such an event, including ecosystem recovery are still uncertain. Here we simulate a catastrophic event in an intertidal sedimentary habitat. We also simulate four recovery scenarios: 1. No Recovery, 2. Migration Recovery, and recovery by differential opportunistic colonisation by 3. the polychaete worm Hediste diversicolor and 4. the mud snail Peringia ulvae, two locally dominant infauna species. These are compared to a control scenario not subjected to the event. The simulated extreme event caused a shift in habitat state due to a reduction in mobile macrofauna abundance and an increase in microphytobenthos biomass. Migratory recovery of species and the simulated opportunistic expansion of a single species ameliorated this shift and, for some metrics, functional compensation for the loss of other species and the preservation of certain ecosystem functions was observed. The dominant species identity during post-event habitat recovery can have considerable effects on important ecosystem processes and functions with consequences that may result in functional regime shifts in a habitat and alter coastal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.