The chemokine stromal-derived factor-1 (SDF-1, also known as CXCL12) and its receptor CXCR4 have been implicated in homing of stem cells to the bone marrow and the homing of bone marrow-derived cells to sites of injury. Bone marrow cells infiltrate brain and give rise to long-term resident cells following injury. Therefore, SDF-1 and CXCR4 expression patterns in 40 mice were examined relative to the homing of bone marrow-derived cells to sites of ischemic injury using a stroke model. Mice received bone marrow transplants from green fluorescent protein (GFP) transgenic donors and later underwent a temporary middle cerebral artery suture occlusion (MCAo). SDF-1 was associated with blood vessels and cellular profiles by 24 hours through at least 30 days post-MCAo. SDF-1 expression was principally localized to the ischemic penumbra. The majority of SDF-1 expression was associated with reactive astrocytes; much of this was perivascular. GFP+ cells were associated with SDF-1-positive vessels and were also found in the neuropil of regions with increased SDF-1 immunoreactivity. Most vessel-associated GFP+ cells resemble pericytes or perivascular microglia and the majority of the GFP+ cells in the parenchyma displayed characteristics of activated microglial cells. These findings suggest SDF-1 is important in the homing of bone marrow-derived cells, especially monocytes, to areas of ischemic injury.
Background and Purpose-After an ischemic event, bone marrow-derived cells may be involved in reparative processes.There is increasing evidence that bone marrow-derived stem cells may be a source of endothelial cells and organ-specific cells. Our objectives were to determine whether bone marrow-derived cells were a source of endothelial cells and neurons after cerebral ischemia. Methods-We transplanted bone marrow from male C57 BL/6-TgN (ACTbEGFP)1Osb mice, which express green fluorescent protein (GFP), into female C57 BL/6J mice. The recipient mice then underwent suture occlusion of the middle cerebral artery (MCA), and bone marrow-derived cells were tracked by GFP epifluorescence and Y chromosome probe. Results-Within 3 days and at 7 and 14 days after MCA occlusion, bone marrow-derived cells incorporated into the vasculature in the ischemic zone and expressed an endothelial cell phenotype. Few bone marrow-derived cells incorporated into the vasculature 24 hours after MCA occlusion. Some bone marrow-derived cells also expressed the neuronal marker NeuN at 7 and 14 days after ischemia. Conclusions-Postnatal vasculogenesis occurs in the brain in the setting of a cerebral infarction. Bone marrow-derived cells are a source of endothelial cells and NeuN-expressing cells after cerebral infarction. This plasticity may be exploited in the future to enhance recovery after stroke.
Once hypoxic-ischemic (HI) injury ensues in the human neonate at birth, the resulting brain damage lasts throughout the individual's lifetime, as no ameliorative treatments are currently available. We have recently shown that intracerebral transplantation of multipotent adult progenitor cells (MAPCs) results in behavioral improvement and reduction in ischemic cell loss in neonatal rat HI-injury model. In an attempt to advance this cellular therapy to the clinic, we explored the more practical and less invasive intravenous administration of MAPCs. Seven-day-old Sprague-Dawley rats were initially subjected to unilateral HI injury, then 7 days later received intracerebral or intravenous injections of allogeneic rat MAPCs. On post-transplantation days 7 and 14, the animals that received MAPCs via the intracerebral or intravenous route exhibited improved motor and neurologic scores compared with those that received vehicle infusion alone. Immunohistochemical evaluations at day 14 after transplantation revealed that both intracerebrally and intravenously transplanted MAPCs were detected in the ischemic hippocampal area. The degree of hippocampal cell preservation was almost the same in the two treatment groups and greater than that in the vehicle group. These results show that intravenous delivery of MAPCs is a feasible and efficacious cell therapy with potential for clinical use.
This study was undertaken to determine if patients who lack muscle phosphorylase (i.e., McArdle's disease), and therefore the ability to produce lactic acid during exercise, demonstrate a normal hyperventilatory response during progressive incremental exercise. As expected these patients did not increase their blood lactate above resting levels, whereas the blood lactate levels of normal subjects increased 8- to 10-fold during maximal exercise. The venous pH of the normal subjects decreased markedly during exercise that resulted in hyperventilation. The patients demonstrated a distinct increase in ventilation with respect to O2 consumption similar to that seen in normal individuals during submaximal exercise. However their hyperventilation resulted in an increase in pH because there was no underlying metabolic acidosis. End-tidal partial pressures of O2 and CO2 also reflected a distinct hyperventilation in both groups at approximately 70-85% maximal O2 consumption. These data show that hyperventilation occurs during intense exercise, even when there is no increase in plasma [H+]. Since arterial CO2 levels were decreasing and O2 levels were increasing during the hyperventilation, it is possible that nonhumoral stimuli originating in the active muscles or in the brain elicit the hyperventilation observed during intense exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.