In this paper, we introduce an iterative algorithm to approximate a common solution of a generalized equilibrium problem and a fixed point problem for an asymptotically nonexpansive mapping in a real Hilbert space. We prove that the sequences generated by the iterative algorithm converge strongly to a common solution of the generalized equilibrium problem and the fixed point problem for an asymptotically nonexpansive mapping. The results presented in this paper extend and generalize many previously known results in this research area. Some applications of main results are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.