We present here results using two novel adaptive optic elements, an electro-static membrane mirror, and a dual frequency nematic liquid crystal. These devices have the advantage of low cost, low power consumption, and compact size. Possible applications of the devices are astronomical adaptive optics, laser beam control, laser cavity mode control, and real time holography. Field experiments were performed on the Air Force Research Laboratory, Directed Energy Directorate's 3.67 meter AMOS telescope on Maui, Hawaii.
The Air Force Research Laboratory/Directed Energy Directorate (AFRLIDE) via the ALVA (Applications of Lidars for Vehicles with Analysis) program installed in late 2000 a wideband, 12J 15Hz CO2 laser radar (ladar) on the 3.67 meter aperture AEOS (Advanced Electro-Optics System) telescope. This system is part of the Maui Space Surveillance System (MSSS), on the summit ofHaleakala, Maui, HI. This ladar adopts the technology successfully demonstrated by the first generation HI-CLASS (fflgh Performance ço2 kadar surveillance sensor) operating on the nearby 0.6 meter aperture Laser Beam Director (LBD) and developed under the Field Ladar Demonstration program jointly sponsored by AFRL/DE and the Army's Space and Missile Defense Command.The moderate power (-4 80 watts) HI-CLASS/AEOS system generates multiple, coherent waveforms for precision satellite tracking and characterization of space objects for 1 m2 targets at ranges out to 10,000 km. This system also will be used to track space objects smaller than 30 cm at ranges to 2,000 km. A third application of this system is to provide data for developing satellite identification, characterization, health and status techniques. This paper will discuss the operating characteristics and innovative features of the new system. The paper will also review recent results in support of AF needs, demonstrations, experiments, as well as planned activities that directly support applications in the DoD, scientific, and commercial arenas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.