We investigated the role of fatigue in muscle strain injuries using the extensor digitorum longus muscles of 48 rabbits. The muscles of the rabbits were fatigued by 25% or 50% then stretched to failure and compared with the contralateral controls. Three rates of stretch were used. The force to muscle failure was reduced in the fatigued leg in all groups (range, 93% to 97.4% compared with the controls). The change in muscle length in the fatigue groups was not different from the controls. The amount of energy absorbed in the fatigued muscle was 69.7% to 92% that of the energy absorbed in the control muscle. The lowest energy absorption occurred in muscles that were more fatigued. In eight additional rabbits, fatigued extensor digitorum longus muscles were compared with submaximally stimulated muscles with the equivalent contractile properties, and no difference was seen. Muscles subjected to strains are frequently injured under high-intensity eccentric loading conditions. Under these conditions, muscles absorb energy and provide control and regulation of limb movement. Our data showed that muscles are injured at the same length, regardless of the effects of fatigue. However, fatigued muscles are able to absorb less energy before reaching the degree of stretch that causes injuries.
We compared the biomechanical properties of passive and stimulated muscle rapidly lengthened to failure in an experimental animal model. The mechanical parameters compared were force to tear, change in length to tear, site of failure, and energy absorbed by the muscle-tendon unit before failure. Paired comparisons were made between 1) muscles stimulated at 64 Hz (tetanic stimulation) and passive (no stimulation) muscles, 2) muscles stimulated at 16 Hz (wave-summated stimulation) and passive muscles, and 3) muscles stimulated at 64 Hz and at 16 Hz. Both tetanically stimulated and wave-summation contracted muscles required a greater force to tear (at 64 Hz, 12.86 N more, P less than 0.0004; and at 16 Hz, 17.79 N more, P less than 0.003) than their nonstimulated controls, while there was no statistical difference in failure force between muscles stimulated at 16 Hz and 64 Hz. The energy absorbed was statistically greater for the stimulated muscles than for the passive muscles in Groups 1 and 2 (at 64 Hz, 100% more, P less than 0.0003; and 16 Hz, 88% more, P less than 0.0002). In Group 3, the tetanically contracted muscle-tendon units absorbed 18% more energy than the wave-summated stimulated muscles (P less than 0.01). All muscles tore at the distal musculotendinous junction, and there was no difference in the length increase at tear between muscles in each group. These findings may lead to enhanced understanding of the mechanism and physiology of muscle strain injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.