Male and female reproductive functions have been proposed as possibly sensitive targets for the biological effects of 60-Hz (power frequency) magnetic fields (MF). However, experimental data relevant to this hypothesized association are very limited. In the present study, the "reproductive assessment by continuous breeding" design was used to identify possible effects of MF exposure on reproductive performance, fetal development, and early postnatal growth in rats. Groups of age-matched Sprague-Dawley rats (40 breeding pairs/group) were exposed continuously (18.5 hr per day) to linearly polarized, transient-free 60-Hz MF at field strengths of 0 Gauss (G; sham control), 0.02 G, 2.0 G, or 10.0 G. An additional group of 40 breeding pairs received intermittent (1 hr on/1 hr off) exposure to 10.0 G fields. F0 breeding pairs were exposed to MF or sham fields for 1 week prior to mating, during a 14-week period of cohabitation, and during a 3-week holding period after cohabitation. The duration of the cohabitation period was selected to be sufficient for the delivery of five litters in the sham control group. Pups from the final F1 litter from each breeding pair were exposed to MF or sham fields until sexual maturity, were cohabitated in MF or sham fields for 7 days with nonsiblings from the same exposure group, and were held in the MF or sham fields for 22 days to permit delivery of F2 pups for evaluation. No evidence of exposure-related toxicity was identified in any rat in the F0, F1, or F2 generations. Fetal viability and body weights in all litters of groups exposed to MF were comparable to those of sham controls. No significant differences between sham controls and MF-exposed groups were seen in any measure of reproductive performance (litters/breeding pair, percent fertile pairs, latency to parturition, litter size, or sex ratio) in either the F0 or F1 generation. Exposure of Sprague-Dawley rats to 60-Hz MF strengths of up to 10.0 G either during their peak reproductive period (F0) or during gestation and throughout their life span (F1) has no biologically significant effects on reproductive performance. These results do not support the hypothesis that exposure to pure, linearly polarized 60-Hz MF is a significant reproductive or developmental toxicant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.