High-amylose starch is in great demand by the starch industry for its unique functional properties. However, very few high-amylose crop varieties are commercially available. In this paper we describe the generation of very-high-amylose potato starch by genetic modification. We achieved this by simultaneously inhibiting two isoforms of starch branching enzyme to below 1% of the wild-type activities. Starch granule morphology and composition were noticeably altered. Normal, high-molecular-weight amylopectin was absent, whereas the amylose content was increased to levels comparable to the highest commercially available maize starches. In addition, the phosphorus content of the starch was increased more than fivefold. This unique starch, with its high amylose, low amylopectin, and high phosphorus levels, offers novel properties for food and industrial applications.
SummaryFull length cDNAs encoding a second starch branching enzyme (SBE A) isoform have been isolated from potato tubers. The predicted protein has a molecular mass of 101 kDa including a transit peptide of 48 amino acids. Multiple forms of the SBE A gene exist which differ mainly in the length of a polyglutamic acid repeat at the C-terminus of the protein. Expression of the mature protein in Escherichia coli demonstrates that the gene encodes an active SBE. Northern analysis demonstrates that SBE A mRNA is expressed at very low levels in tubers but is the predominant isoform in leaves. This expression pattern was confirmed by Western analysis using isoform specific polyclonal antibodies raised against E. coli expressed SBE A. SBE A protein is found predominantly in the soluble phase of tuber extracts, indicating a stromal location within the plastid. Transgenic potato plants expressing an antisense SBE A RNA were generated in which almost complete reductions in SBE A were observed. SBE activity in the leaves of these plants was severely reduced, but tuber activity was largely unaffected. Even so, the composition and structure of tuber starch from these plants was greatly altered. The proportion of linear chains was not significantly increased but the average chain length of amylopectin was greater, resulting in an increase in apparent amylose content as judged by iodine binding. In addition, the starch had much higher levels of phosphorous.
SummaryDietary intake of phytosterols (plant sterols) has been shown to be effective in reducing blood cholesterol levels, thereby reducing the risk of cardiovascular disease. Phytosterols are most commonly sourced from vegetable oils, where they are present as minor components.We report here the generation of transgenic tobacco seeds substantially enhanced in phytosterol content by the expression of a modified form of one of the key sterol biosynthetic enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR). The constitutive expression of an N-terminal truncated Hevea brasiliensis HMGR (t-HMGR), lacking the membrane binding domain, enhanced seed HMGR activities by 11-fold, leading to increases in total seed sterol of 2.4-fold. Seed-specific expression of t-HMGR enhanced total seed sterol levels by 3.2-fold, to 1.36% dry weight or 3.25% of oil. 4-desmethylsterols were increased by 2.2-fold, whilst certain sterol biosynthetic intermediates, in particular cycloartenol and 24-ethylidene lophenol, also accumulated. The additional sterol in seed tissue was present in the form of fatty acid esters. Constitutive expression of t-HMGR increased leaf phytosterol sterol levels by 10-fold, representing 1.8% dry weight, and the sterol was sequestered, in acyl ester form, as cytoplasmic 'oil droplets'. These studies establish HMGR as a key enzyme controlling overall flux into the sterol biosynthesis pathway in seed tissue, but the accumulation of certain intermediates suggests additional slow steps in the pathway. The expression of an N-truncated HMGR activity has generated novel phytosterol-enriched raw materials that may provide the basis of new sourcing opportunities for this important class of cholesterol-lowering actives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.