Signi®cant differences in backscattered electron (BSE) yields exist between the surfaces cleaned by methods used in electron microscopy and spectroscopy. These differences have been observed for Au, Cu and Al specimens, and are interpreted on the basis of simulated BSE yields. Composition and thickness of the surface contamination layers, responsible for the differences, are estimated. The results (7 nm of carbon on Au or 3 nm of oxide on Al) remain within expectation and indicate that the BSE yield measurements and BSE images should be interpreted cautiously. Peculiar results are obtained for Cu, perhaps due to a different cleaning procedure. A new concept of an information depth for the BSE signal is introduced as a depth within which the total BSE yield can be modelled as composed of the yields of layers proportional to their thickness weighted by the escape depths. This concept proved satisfactory for thin surface layers and brought the information depth values 2 to 4 times smaller than ®rst estimated, i.e. half the penetration depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.