U87MG human glioma cells in cultures expressed metabotropic glutamate (mGlu) receptors mGlu2 and mGlu3. Addition of the mGlu2/3 receptor antagonist LY341495 to the cultures reduced cell growth, expression of cyclin D1/2, and activation of the MAP kinase and phosphatidylinositol-3-kinase pathways. This is in line with the evidence that activation of mGlu2/3 receptors sustains glioma cell proliferation. U87MG cells were either implanted under the skin (1x10(6) cells/0.5 ml) or infused into the caudate nucleus (0.5x10(6) cells/5 microl) of nude mice. Animals were treated for 28 days with mGlu receptor antagonists by means of subcutaneous osmotic minipumps. Treatments with LY341495 or (2S)-alpha-ethylglutamate (both infused at a rate of 1 mg/kg per day) reduced the size of tumors growing under the skin. Infusion of LY341495 (10 mg/kg per day) also reduced the growth of brain tumors, as assessed by magnetic resonance imaging analysis carried out every seven days. The effect of drug treatment was particularly evident during the exponential phase of tumor growth, that is, between the third and the fourth week following cell implantation. Immunohistochemical analysis showed that U87MG cells retained the expression of mGlu2/3 receptors when implanted into the brain of nude mice. These data suggest that mGlu2/3 receptor antagonists are of potential use in the experimental treatment of malignant gliomas.
The mGlu2/3 receptor agonists 4-carboxy-3-hydroxyphenylglycine (4C3HPG) and LY379268 attenuated NMDA toxicity in primary cultures containing both neurons and astrocytes. Neuroprotection was abrogated by PD98059 and LY294002, which inhibit the mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI-3-K) pathways, respectively. Cultured astrocytes lost the ability to produce transforming growth factor-b1 (TGF-b1) in response to mGlu2/3 receptor agonists when co-incubated with PD98059 or LY294002. As a result, the glial medium was no longer protective against NMDA toxicity. Activation of the MAPK and PI-3-K pathways in cultured astrocytes treated with 4C3HPG or LY379268 was directly demonstrated by an increase in the phosphorylated forms of ERK-1/2 and Akt. Similarly to that observed in the culture, intracerebral or systemic injections of mGlu2/3 receptor agonists enhanced TGF-b1 formation in the rat or mouse caudate nucleus, and this effect was reduced by PD98059. PD98059 also reduced the ability of LY379268 to protect striatal neurons against NMDA toxicity. These results suggest that activation of glial mGlu2/3 receptors induces neuroprotection through the activation of the MAPK and PI-3-K pathways leading to the induction of TGF-b. Keywords: astrocytes, MAP kinase, mGlu receptors, neuroprotection, phosphatidylinositol-3-kinase, TGF-b1.The low success of ionotropic glutamate receptor antagonists in clinical trials (reviewed by Lee et al. 1999) has switched the interest toward metabotropic glutamate (mGlu) receptors as targets for neuroprotective drugs. These receptors form a family of eight subtypes divided into three groups on the basis of sequence homology, pharmacological pro®le and transduction mechanisms. Group-I includes mGlu1 and -5 receptors, which are coupled to polyphosphoinositide hydrolysis and selectively activated by 3,5-dihydroxyphenylglycine (DHPG). Group-II includes mGlu2 and -3 receptors, which are coupled to G i proteins in heterologous expression systems. Compounds are now available that activate these two receptor subtypes with high potency and selectivity, such as (1)-2- Abbreviations used: l-AP4, l-2-amino-4-phosphonobutanoate; 4C3HPG, 4-carboxy-3-hydroxyphenylglycine; DHPG, 3,5-dihydroxyphenylglycine; DIV, days in vitro; GAD, glutamate decarboxylase; GCM, glial conditioned medium; LY354740, (1)-2-aminobicyclo[3,1,0]hexane-2,6-dicarboxylic acid; LY379268, (±)-2-oxa-4-aminobicyclo[3,1,0]hexane-4,6-dicarboxylic acid; LY389795, (±)-2-thia-4-aminobicyclo[3,1,0]hexane-4,6-dicarboxylic acid; LY294002, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; mGlu, metabotropic glutamate; MAPK, mitogen activated protein kinase; MS, medium stock; PI-3-K, phosphatidylinositol-3-kinase; PPG, 4-phosphonophenylglycine; PD98059, 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one; TGF-b1, transforming growth factor-b1. R e t r a c t e d
Abnormalities of synaptic transmission and plasticity in the hippocampus represent an integral part of the altered programming triggered by early life stress. Prenatally restraint stressed (PRS) rats develop long-lasting biochemical and behavioral changes, which are the expression of an anxious/depressive-like phenotype. We report here that PRS rats showed a selective impairment of depolarization-or kainate-stimulated glutamate and
Previous studies have identified the mammalian homologue of Bv8 (mBv8), a small protein originally isolated from skin secretions of the frog, Bombina variegata. In situ hybridization showed that mBv8 RNA was widely expressed in the rodent CNS, with high levels being detected in layer II of the cerebral cortex, limbic regions, cerebellar Purkinje cells, and dorsal and ventral horns of the spinal cord. A similar pattern of distribution was found by examining the presence of mBv8 protein by immunocytochemistry. Addition of frog Bv8 to cultured cerebellar granule cells reduced the extent of apoptotic death induced by switching the growing medium from 25 to 5 mM K+. Bv8 could also protect cultured cortical neurons against excitotoxic death. Both effects were prevented by PD98059 and LY294002, which inhibit the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI-3-K) pathways, respectively. In cultured cerebellar granule cells, Bv8 stimulated both the MAPK and the PI-3-K pathways, as revealed by Western blot analysis of phosphorylated p44/p42 MAPKs and phosphorylated Akt, respectively. We conclude that mBv8 acts as an endogenous neurotrophic factor and supports neuronal survival through the activation of the MAPK/PI-3-K pathways.
Glial cell proliferation in culture is under the control of metabotropic glutamate (mGlu) receptors. We have examined whether this control extends to human glioma cells. Primary cultures were prepared from surgically removed human glioblastomas. RT-PCR combined with western blot analysis showed that most of the cultures (eight out of 11) expressed group-II mGlu receptors. In two selected cultures (MZC-12 and FCN-9), the mGlu2/3 receptor antagonist, LY341495, slowed cell proliferation when applied to the growth medium from the second day after plating. This effect was reversible because linear cell growth was restored after washing out the drug. LY341495 reduced glioma cell proliferation at concentrations lower than 100 nM, which are considered as selective for mGlu2/3 receptors. In addition, its action was mimicked by the putative mGlu2/3 receptor antagonist (2S)-a-ethylglutamate. The anti-proliferative effect of LY341495 was confirmed by measuring [methyl-3 H]-thymidine incorporation in cultures arrested in G 0 phase of the cell cycle and then stimulated to proliferate by the addition of 10% fetal calf serum or 100 ng/mL of epidermal growth factor (EGF). In cultures treated with EGF, LY341495 was also able to reduce the stimulation of the mitogen-activated protein kinase (MAPK) pathway, as well as the induction of cyclin D1. Both effects, as well as decreased [methyl-3 H]-thymidine incorporation, were partially reduced by co-addition of the potent mGlu2/3 receptor agonist, LY379268. We conclude that activation of group-II mGlu receptors supports the growth of human glioma cells in culture and that antagonists of these receptors should be tested for their ability to reduce tumour growth in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.