The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.
The linear production of consumer goods is characterized by mass manufacture by multinational enterprises and globally dispersed supply chains. The current centralised model has created a distance between the manufacturer and end user, limiting the opportunity for intelligent circular approaches for production and consumption. Through a mixed method approach opportunities of circularity are explored for the consumer goods sector. The study presents four lenses to analyze three enterprises through a multi-case study approach to explore the potential of digital intelligence and redistributed manufacturing (RDM) as enablers of circular business models. In addition, the study examines whether Discrete Event Simulation can be used to evaluate the circular scenarios identified through quantifying flows of material that determine traditional economic value (cost/tonne). The mixed method approach demonstrates that, a qualitative systemic analysis can reveal opportunities for circularity, gained through implementing 'digital intelligence' and distributed models of production and consumption. Furthermore, simulations can provide a quantified evaluation on the effects of introducing circular activities across a supply chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.