In Saccharomyces, the IRC7 gene encodes for a cysteine S-conjugate β-lyase enzyme which can release polyfunctional thiols from their cysteinylated precursor forms, thereby promoting thiol aroma in beer. This study examined the thiol production of 10 commercial yeast strains in two different media, a hopped yeast extract−peptone−dextrose (YPD) medium and a 100% barley malt wort to explore how differences in yeast strain and medium conditions influence the release of polyfunctional thiols. 3-Sulfanylhexan-1-ol was most affected by medium conditions, and its concentrations were highest in wort fermentations. The higher nitrogen content and pH of the YPD medium relative to the wort fermentations were notable differences, and significant correlations between these variables and the extent of free thiol production were observed. A strong association existed between polyfunctional thiol concentrations and the fermentation-derived, malt, and hop-derived compounds 2-phenylethanol, β-damascenone, and βionone. The sensory impressions of thiol character in beer were influenced by the presence of other aromatic compounds such as esters and terpene alcohols, and aroma attributes such as "tropical" were not the most suitable for describing beers brewed with yeasts that fully express homozygous IRC7 F . Sensory attributes "sweaty", "vegetal", and "overripe fruit" were more strongly associated with these strains.
The biotransformation of hop aroma, particularly by the cysteine S-conjugate beta-lyase enzyme (CSL), has been a recent topic of tremendous interest among brewing scientists and within the brewing community. During a process often referred to as biotransformation, yeast-encoded enzymes convert flavorless precursor molecules found in barley and hops into volatile thiols that impart a variety of desirable flavors and aromas in beer. Two volatile thiols of particular interest are 3-mercaptohexan-1-ol (3MH) and its acetate ester, 3-mercaptohexyl acetate (3MHA), which impart guava and passionfruit flavors, respectively. In this study, a parental Saccharomyces cerevisiae brewing strain that displayed low thiol biotransformation activity was genetically manipulated (GM) to substantially increase its thiol biotransformation potential. Construction of this GM strain involved integration of a gene encoding a highly active CSL enzyme that converts thiol precursors into the volatile thiol, 3MH. Three additional strains were subsequently developed, each of which paired CSL expression with expression of an alcohol acyltransferase (AAT) gene. It was hypothesized that expression of an AAT in conjunction with CSL would increase production of 3MHA. Fermentation performance, sensory characteristics, and 3MH/3MHA production were evaluated for these four GM strains and their non-GM parent in 1.5hL fermentations using 100% barley malt wort hopped at low levels with Cascade hops. No significant deviations in fermentation performance (time to attenuation, final gravity, alcohol content, wort fermentability) or finished beer chemistry were observed between the GM strains and the parent strain with the exception of the speed of vicinal diketones reduction post-fermentation, which was quicker for the GM strains. The GM strains produced beer that had up to 73-fold and 8-fold higher 3MH and 3MHA concentrations than the parent strain, achieving concentrations that were up to 79-fold greater than their sensory detection thresholds. The beers were described as intensely tropical and fruity, and were associated with guava, passionfruit, mango, pineapple and sweaty aromas. These experiments demonstrate the potential of genetic modification to dramatically enhance yeast biotransformation ability without creating off flavors or affecting fermentation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.