Abstract. Access to high quality weather and climate data is crucial for a wide range of societal and economic issues. It allows optimising industrial processes, supports the identification of potential risks related to climate change or allows the development of corresponding adaptation and mitigation strategies. Although such data is freely available through Germany’s national meteorological service DWD (Deutscher Wetterdienst) since 2017, the application potential in industry and society has certainly not yet been fully unlocked. Major obstacles are the complexity of the raw data, as well as missing tools for their simple integration into existing industrial applications. The goal of the research project FAIR is to simplify the information exchange between the DWD and economical players. In order to reach this goal a requirement analysis with end-users of weather data from three different sectors was conducted. A central requirement regarding the site assessment of wind plants is quick and easy access to historical wind-series at specific sites. Preferably downloadable in formats like CSV or via an API. Event planning partners are interested in a quick access to health relevant weather information at their event location, and the E-mobility sector in temperature data along planned routes. In this paper, we summarize the results of the requirement analysis and present the deduced technical architecture and FAIR services aiming at a user-friendly exchange of weather data.
Today, a growing number of computational aids and simulations are shaping model-informed drug development. Artificial intelligence, a family of self-learning algorithms, is only the latest emerging trend applied by academic researchers and the pharmaceutical industry. Nanomedicine successfully conquered several niche markets and offers a wide variety of innovative drug delivery strategies. Still, only a small number of patients benefit from these advanced treatments, and the number of data sources is very limited. As a consequence, “big data” approaches are not always feasible and smart combinations of human and artificial intelligence define the research landscape. These methodologies will potentially transform the future of nanomedicine and define new challenges and limitations of machine learning in their development. In our review, we present an overview of modeling and artificial intelligence applications in the development and manufacture of nanomedicines. Also, we elucidate the role of each method as a facilitator of breakthroughs and highlight important limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.