For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.
To develop a novel pharmacogenetic genotyping panel, a multidisciplinary team evaluated available evidence and selected 29 genes implicated in interindividual drug response variability, including 130 sequence variants and additional copy number variants (CNVs). Of the 29 genes, 11 had guidelines published by the Clinical Pharmacogenetics Implementation Consortium. Targeted genotyping and CNV interrogation were accomplished by multiplex single‐base extension using the MassARRAY platform (Agena Biosciences) and multiplex ligation‐dependent probe amplification (MRC Holland), respectively. Analytical validation of the panel was accomplished by a strategic combination of > 500 independent tests performed on 170 unique reference material DNA samples, which included sequence variant and CNV accuracy, reproducibility, and specimen (blood, saliva, and buccal swab) controls. Among the accuracy controls were 32 samples from the 1000 Genomes Project that were selected based on their enrichment of sequence variants included in the pharmacogenetic panel (VarCover.org). Coupled with publicly available samples from the Genetic Testing Reference Materials Coordination Program (GeT‐RM), accuracy validation material was available for the majority (77%) of interrogated sequence variants (100% with average allele frequencies > 0.1%), as well as additional structural alleles with unique copy number signatures (e.g.,
CYP2D6*5
,
*13
,
*36
,
*68
;
CYP2B6*29
; and
CYP2C19*36
). Accuracy and reproducibility for both genotyping and copy number were > 99.9%, indicating that the optimized panel platforms were precise and robust. Importantly, multi‐ethnic allele frequencies of the interrogated variants indicate that the vast majority of the general population carries at least one of these clinically relevant pharmacogenetic variants, supporting the implementation of this panel for pharmacogenetic research and/or clinical implementation programs.
Clinical genetic testing for Mendelian conditions is typically coupled with pretest and posttest genetic counseling to support both patients and providers; however, clinical pharmacogenetic testing poses unique characteristics that challenge the traditional role of a genetic counseling service. Given the paucity of professional guidelines on posttest pharmacogenetic counseling, this Perspective highlights key issues currently related to delivering a posttest pharmacogenetic counseling service, including professional competencies, service access, scope of effort, and an evolving regulatory landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.