Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0, 1]. The logic is known to be axiomatizable, but no deduction system amenable to prooftheoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively.
First-order Gödel logics are a family of finite-or infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Gödel logics G V (sets of those formulas which evaluate to 1 in every interpretation into V ). It is shown that G V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V , or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Gödel logics are also characterized.
A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and normal form theorems for the natural deduction systems.
Abstract. After a brief flirtation with logicism in 1917-1920, David Hilbert proposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for ever stronger and more comprehensive areas of mathematics and finitistic proofs of consistency of these systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of lecture courses at the University of Göttingen between 1917 and 1923, and notably in Ackermann's dissertation of 1924. The main innovation was the invention of the ε-calculus, on which Hilbert's axiom systems were based, and the development of the ε-substitution method as a basis for consistency proofs. The paper traces the development of the "simultaneous development of logic and mathematics" through the ε-notation and provides an analysis of Ackermann's consistency proofs for primitive recursive arithmetic and for the first comprehensive mathematical system, the latter using the substitution method. It is striking that these proofs use transfinite induction not dissimilar to that used in Gentzen's later consistency proof as well as non-primitive recursive definitions, and that these methods were accepted as finitistic at the time.
Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917–1923. The aim of this paper is to describe these results, focussing primarily on propositional logic, and to put them in their historical context. It is argued that truth-value semantics, syntactic (“Post-”) and semantic completeness, decidability, and other results were first obtained by Hilbert and Bernays in 1918, and that Bernays's role in their discovery and the subsequent development of mathematical logic is much greater than has so far been acknowledged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.