The CRAC2 compute^ cpde is g revised version of CRAC (Calculation of Reactor gL,ccident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and ^ description of each of the models used. Significant improvements incorporated into CRAC2 include ap improved weather sequence sampling technique, a new evacuation model, and new output; capabilities. In addition, refinements have beep made to tl^e atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control. The physiological finite element model uses approximately 40,000 solid thermal and blood network elements to represent the human body. The manikin and physiological model demonstrate their value in evaluating the thermoregulatory response of a person in a protective uniform. They can also be used to evaluate the effectiveness of personal cooling systems.
Current vehicle climate control systems are dramatically overpowered because they are designed to condition the cabin air mass in a specified period of time. A more effective and energy efficient objective is to directly achieve thermal comfort of the passengers. NREL is developing numerical and experimental tools to predict human thermal comfort in non-uniform transient thermal environments. These tools include a finite element model of human thermal physiology, a psychological model that predicts both local and global thermal comfort, and a high spatial resolution sweating thermal manikin for testing in actual vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.