Through field studies in large commercial buildings and reviews of building plans, we investigated the effective leakage areas (ELAs), air-leakage rates, and conduction heat gains of duct systems. Different methods for measuring air-leakage rates were also compared. ELAs-of supply ducts ranged from 0.4 to 2.0 cm 2 per square meter of floor area served, and from 1.0 to 4.8 cm 2 per square meter of duct surface area. On a per-unit-floor-area basis, these duct ELAs are comparable to the values measured in residences. The corresponding values of duct leakage class were 60 to 270, much higher than the range of 3 to 12 reported by ASHRAE as attainable for quality duct construction and sealing practices when leakage at connections to duct-mounted equipment is not considered. The measured air-leakage rates as a percentage of the inlet air flow rate varied from 0% to 30%, with most of the measurements falling between 10% and 20%. Large inconsistencies among the air-leakage rates determined from different measurement procedures exemplify the need for further development and evaluation of measurement methods. Heat gains between the outlet of the cooling coils and the supply registers caused supply-air temperatures to increase, on average, by 0.6°C to 2°C. The corresponding values of conduction effectiveness were 0.75 to 0.90; thus, heat conduction decreased the cooling capacity of the supply air exiting registers by 10% to 25%. Because these results are based on studies in only a few buildings, generalizations from these findings are premature.
We argue that a primary focus on energy efficiency may not be sufficient to slow (and ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need to return to an earlier emphasis on "conservation," with energy efficiency seen as a means rather than an end in itself. We briefly review the concept of "intensive" versus "extensive" variables (i.e., energy efficiency versus energy consumption), and why attention to both consumption and efficiency is essential for effective policy in a carbon-and oil-constrained world with increasingly brittle energy markets. To start, energy indicators and policy evaluation metrics need to reflect energy consumption as well as efficiency.We introduce the concept of "progressive efficiency," with the expected or required level of efficiency varying as a function of house size, appliance capacity, or more generally, the scale of energy services. We propose introducing progressive efficiency criteria first in consumer information programs (including appliance labeling categories) and then in voluntary rating and recognition programs such as ENERGY STAR. As acceptance grows, the concept could be extended to utility rebates, tax incentives, and ultimately to mandatory codes and standards.For these and other programs, incorporating criteria for consumption as well as efficiency offers a path for energy experts, policy-makers, and the public to begin building consensus on energy policies that recognize the limits of resources and global carrying-capacity. Ultimately, it is both necessary and, we believe, possible to manage energy consumption, not just efficiency in order to achieve a sustainable energy balance. Along the way, we may find it possible to shift expectations away from perpetual growth and toward satisfaction with sufficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.