Purpose: The importance of four-dimensional-magnetic resonance imaging (4D-MRI) is increasing in guiding online plan adaptation in thoracic and abdominal radiotherapy. Many 4D-MRI sequences are based on multislice two-dimensional (2D) acquisitions which provide contrast flexibility. Intrinsic to MRI, however, are machine-and subject-related geometric image distortions. Full correction of slice-based 4D-MRIs acquired on the Unity MR-linac (Elekta AB, Stockholm, Sweden) is challenging, since through-plane corrections are currently not available for 2D sequences. In this study, we implement a full three-dimensional 3D correction and quantify the geometric and dosimetric effects of machine-related (residual) geometric image distortions. Methods: A commercial three-dimensional (3D) geometric QA phantom (Philips, Best, the Netherlands) was used to quantify the effect of gradient nonlinearity (GNL) and static-field inhomogeneity (B0I) on geometric accuracy. Additionally, the effectiveness of 2D (in-plane, machine-generic), 3D (machine-generic), and in-house developed 3D þ (machine-specific) corrections was investigated. Corrections were based on deformable vector fields derived from spherical harmonics coefficients. Three patients with oligometastases in the liver were scanned with axial 4D-MRIs on our MR-linac (total: 10 imaging sessions). For each patient, a step-and-shoot IMRT plan (3 9 20 Gy) was created based on the simulation mid-position (midP)-CT. The 4D-MRIs were then warped into a daily midP-MRI and geometrically corrected. Next, the treatment plan was adapted according to the position offset of the tumor between midP-CT and the 3D-corrected midP-MRIs. The midP-CT was also deformably registered to the daily midP-MRIs (different corrections applied) to quantify the dosimetric effects of (residual) geometric image distortions. Results: Using phantom data, median GNL distortions were 0.58 mm (no correction), 0.42-0.48 mm (2D), 0.34 mm (3D), and 0.34 mm (3D þ ), measured over a diameter of spherical volume (DSV) of 200 mm. Median B0I distortions were 0.09 mm for the same DSV. For DSVs up to 500 mm, through-plane corrections are necessary to keep the median residual GNL distortion below 1 mm. 3D and 3D þ corrections agreed within 0.15 mm. 2D-corrected images featured uncorrected through-plane distortions of up to 21.11 mm at a distance of 20-25 cm from the machine's isocenter. Based on the 4D-MRI patient scans, the average external body contour distortions were 3.1 mm (uncorrected) and 1.2 mm (2D-corrected), with maximum local distortions of 9.5 mm in the uncorrected images. No (residual) distortions were visible for the metastases, which were all located within 10 cm of the machine's isocenter. The interquartile range (IQR) of dose differences between planned and daily dose caused by variable patient setup, patient anatomy, and online plan adaptation was 1.37 Gy/Fx for the PTV D95%. When comparing dose on 3D-corrected with uncorrected (2D-corrected) images, the IQR was 0.61 (0.31) Gy/Fx. Conclusions: GNL is the ma...
PurposeDaily quantitative MR imaging during radiotherapy of cancer patients has become feasible with MRI systems integrated with linear accelerators (MR-linacs). Quantitative images could be used for treatment response monitoring. With intravoxel incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use of contrast agents. In this multicenter study, daily IVIM measurements were performed in prostate cancer patients to identify changes that potentially reflect response to treatment.Materials and MethodsForty-three patients were included, treated with 20 fractions of 3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day. The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) were calculated based on the median signal intensities in the non-cancerous prostate and the tumor. Repeatability coefficients (RCs) were determined based on the first two treatment fractions. Separate linear mixed-effects models were constructed for the three IVIM parameters.ResultsIn total, 726 fractions were analyzed. Pre-treatment average values, measured on the first fraction before irradiation, were 1.46 × 10−3 mm2/s, 0.086, and 28.7 × 10−3 mm2/s in the non-cancerous prostate and 1.19 × 10−3 mm2/s, 0.088, and 28.9 × 10−3 mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and D* in the non-cancerous prostate were 0.09 × 10−3 mm2/s, 0.05, and 15.3 × 10−3 mm2/s. In the tumor, these values were 0.44 × 10−3 mm2/s, 0.16, and 76.4 × 10−3 mm2/s. The mixed effects analysis showed an increase in D of the tumors over the course of treatment, while remaining stable in the non-cancerous prostate. The f and D* increased in both the non-cancerous prostate and tumor.ConclusionsIt is feasible to perform daily IVIM measurements on an MR-linac system. Although the repeatability coefficients were high, changes in IVIM perfusion parameters were measured on a group level, indicating that IVIM has potential for measuring treatment response.
Background Post‐radiotherapy locally recurrent prostate cancer (PCa) patients are candidates for focal salvage treatment. Multiparametric MRI (mp‐MRI) is attractive for tumor localization. However, radiotherapy‐induced tissue changes complicate image interpretation. To develop focal salvage strategies, accurate tumor localization and distinction from benign tissue is necessary. Purpose To quantitatively characterize radio‐recurrent tumor and benign radiation‐induced changes using mp‐MRI, and investigate which sequences optimize the distinction between tumor and benign surroundings. Study Type Prospective case–control. Subjects Thirty‐three patients with biochemical failure after external‐beam radiotherapy (cases), 35 patients without post‐radiotherapy recurrent disease (controls), and 13 patients with primary PCa (untreated). Field Strength/Sequences 3T; quantitative mp‐MRI: T 2 ‐mapping, ADC, and K trans and k ep maps. Assessment Quantitative image‐analysis of prostatic regions, within and between cases, controls, and untreated patients. Statistical Tests Within‐groups: nonparametric Friedman analysis of variance with post‐hoc Wilcoxon signed‐rank tests; between‐groups: Mann–Whitney tests. All with Bonferroni corrections. Generalized linear mixed modeling to ascertain the contribution of each map and location to tumor likelihood. Results Benign imaging values were comparable between cases and controls ( P = 0.15 for ADC in the central gland up to 0.91 for k ep in the peripheral zone), both with similarly high peri‐urethral K trans and k ep values (min −1 ) (median [range]: K trans = 0.22 [0.14–0.43] and 0.22 [0.14–0.36], P = 0.60, k ep = 0.43 [0.24–0.57] and 0.48 [0.32–0.67], P = 0.05). After radiotherapy, benign central gland values were significantly decreased for all maps ( P ≤ 0.001) as well as T 2 , K trans , and k ep of benign peripheral zone (all with P ≤ 0.002). All imaging maps distinguished recurrent tumor from benign peripheral zone, but only ADC, K trans , and k ep were able to distinguish it from benign central gland. Recurrent tumor and peri‐urethral K trans values were not significantly different ( P = 0.81), but k ep values were ( P < 0.001). Combining all quantitative maps ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.