The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform
causeme.net
to close the gap between method users and developers.
Alzheimer's disease (AD) is a complex, multicausal disorder involving several spatiotemporal scales and scientific domains. While many studies focus on specific parts of this system, the complexity Electronic supplementary material The online version of this article (
Background: The past decades of research have seen an increase in statistical tools to explore the complex dynamics of mental health from patient data, yet the application of these tools in clinical practice remains uncommon. This is surprising, given that clinical reasoning, e.g., case conceptualizations, largely coincides with the dynamical system approach. We argue that the gap between statistical tools and clinical practice can partly be explained by the fact that current estimation techniques disregard theoretical and practical considerations relevant to psychotherapy. To address this issue, we propose that case conceptualizations should be formalized. We illustrate this approach by introducing a computational model of functional analysis, a framework commonly used by practitioners to formulate case conceptualizations and design patient-tailored treatment. Methods: We outline the general approach of formalizing idiographic theories, drawing on the example of a functional analysis for a patient suffering from panic disorder. We specified the system using a series of differential equations and simulated different scenarios; first, we simulated data without intervening in the system to examine the effects of avoidant coping on the development of panic symptomatic. Second, we formalized two interventions commonly used in cognitive behavioral therapy (CBT; exposure and cognitive reappraisal) and subsequently simulated their effects on the system. Results: The first simulation showed that the specified system could recover several aspects of the phenomenon (panic disorder), however, also showed some incongruency with the nature of panic attacks (e.g., rapid decreases were not observed). The second simulation study illustrated differential effects of CBT interventions for this patient. All tested interventions could decrease panic levels in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.