This paper presents and evaluates a method for detecting and counting demersal fish species in complex, cluttered, and occluded environments that can be installed on the conveyor belts of fishing vessels. Fishes on the conveyor belt were recorded using a colour camera and were detected using a deep neural network. To improve the detection, synthetic data were generated for rare fish species. The fishes were tracked over the consecutive images using a multi-object tracking algorithm, and based on multiple observations, the fish species was determined. The effect of the synthetic data, the amount of occlusion, and the observed dorsal or ventral fish side were investigated and a comparison with human electronic monitoring (EM) review was made. Using the presented method, a weighted counting error of 20% was achieved, compared to a counting error of 7% for human EM review on the same recordings.
This paper presents a rule-based methodology for dynamic viewpoint selection for maturity classification of red and yellow sweet peppers. The method makes an online decision to capture an additional next-best viewpoint based on an economic analysis that considers potential misclassification and robot operational costs. The next-best viewpoint is selected based on color variations on the pepper. Peppers were classified into mature and immature using a random forest classifier based on principle components of various color features derived from an RGB-D camera. The method first attempts to classify maturity based on a single viewpoint. An additional viewpoint is acquired and added to the point cloud only when it is deemed profitable. The methodology was evaluated using leave-one-out cross-validation on datasets of 69 red and 70 yellow sweet peppers from three different maturity stages. Classification accuracy was increased by 6% and 5% using dynamic viewpoint selection along with 52% and 12% decrease in economic costs for red and yellow peppers, respectively, compared to using a single viewpoint. Sensitivity analyses were performed for misclassification and robot operational costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.