Current harvesting robots are limited by low detection rates due to the unstructured and dynamic nature of both the objects and the environment. State-of-the-art algorithms include color- and texture-based detection, which are highly sensitive to the illumination conditions. Deep learning algorithms promise robustness at the cost of significant computational resources and the requirement for intensive databases. In this paper we present a Flash-No-Flash (FNF) controlled illumination acquisition protocol that frees the system from most ambient illumination effects and facilitates robust target detection while using only modest computational resources and no supervised training. The approach relies on the simultaneous acquisition of two images—with/without strong artificial lighting (“Flash”/“no-Flash”). The difference between these images represents the appearance of the target scene as if only the artificial light was present, allowing a tight control over ambient light for color-based detection. A performance evaluation database was acquired in greenhouse conditions using an eye-in-hand RGB camera mounted on a robotic manipulator. The database includes 156 scenes with 468 images containing a total of 344 yellow sweet peppers. Performance of both color blob and deep-learning detection algorithms are compared on Flash-only and FNF images. The collected database is made public.
The effect of camera viewpoint and fruit orientation on the performance of a sweet pepper maturity level classification algorithm was evaluated. Image datasets of sweet peppers harvested from a commercial greenhouse were collected using two different methods, resulting in 789 RGB—Red Green Blue (images acquired in a photocell) and 417 RGB-D—Red Green Blue-Depth (images acquired by a robotic arm in the laboratory), which are published as part of this paper. Maturity level classification was performed using a random forest algorithm. Classifications of maturity level from different camera viewpoints, using a combination of viewpoints, and different fruit orientations on the plant were evaluated and compared to manual classification. Results revealed that: (1) the bottom viewpoint is the best single viewpoint for maturity level classification accuracy; (2) information from two viewpoints increases the classification by 25 and 15 percent compared to a single viewpoint for red and yellow peppers, respectively, and (3) classification performance is highly dependent on the fruit’s orientation on the plant.
This paper addresses the formulation of an individual fruit harvest decision as a nonlinear programming problem to maximize profit, while considering selective harvesting based on fruit maturity. A model for the operational level decision was developed and includes four features: time window constraints, resource limitations, yield perishability, and uncertainty. The model implementation was demonstrated through numerical studies that compared decisions for different types of worker and analyzed different robotic harvester capabilities for a case study of sweet pepper harvesting. The results show the influence of the maturity classification capabilities of the robot on its output, as well as the improvement in cycle times needed to reach the economic feasibility of a robotic harvester.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.