A note on versions:The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription. Abstract: Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of residual stress, which have a detrimental effect on the manufacturability and integrity of a component. Indirectly, these impose severe design restrictions and reduce the reliability of components, driving up costs. This paper uses a thermo-mechanical model to better understand the effect of laser scan strategy on the generation of residual stress in SLM. A complex interaction between transient thermal history and the build-up of residual stress has been observed in the two laser scan strategies investigated. The temperature gradient mechanism was discovered for the creation of residual stress. The greatest stress component was found to develop parallel to the scan vectors, creating an anisotropic stress distribution in the part. The stress distribution varied between laser scan strategies and the cause has been determined by observing the thermal history during scanning. Using this, proposals are suggested for designing laser scan strategies used in SLM.
Abstract:Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of residual stress, which have a detrimental effect on the manufacturability and integrity of a component. Indirectly, these impose severe design restrictions and reduce the reliability of components, driving up costs. This paper uses a thermomechanical model to better understand the effect of laser scan strategy on the generation of residual stress in SLM. A complex interaction between transient thermal history and the build-up of residual stress has been observed in the two laser scan strategies investigated. The temperature gradient mechanism was discovered for the creation of residual stress. The greatest stress component was found to develop parallel to the scan vectors, creating an anisotropic stress distribution in the part. The stress distribution varied between laser scan strategies and the cause has been determined by observing the thermal history during scanning. Using this, proposals are suggested for designing laser scan strategies used in SLM.
Nomenclature:Specific
An investigation into the granular temperature distributions of a binary vibrofluidized granular bed has been conducted using positron emission particle tracking. By repeating each experiment with the tracer selected in turn from the two size components, the granular temperature and packing fraction distributions for each phase were determined. It was found that, for a range of size fractions, the granular temperature of the larger particles was higher than that of the smaller diameter grains, a result which was supported by a simple theoretical analysis based on the steady state energy equation.
Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisable by conventional manufacturing processes. This enables the production of advanced, functionally graded, components. However, for these designs to be successful, the relationships between lattice geometry and performance must be established. We do so here by examining the mechanical behaviour of uniform and graded density SLM Al-Si10-Mg lattices under quasistatic loading. As-built lattices underwent brittle collapse and non-ideal deformation behaviour. The application of a microstructure-altering thermal treatment drastically improved their behaviour and their capability for energy absorption. Heat-treated graded lattices exhibited progressive layer collapse and incremental strengthening. Graded and uniform structures absorbed almost the same amount of energy prior to densification, 6.3 ± 0.2 MJ/m 3 and 5.7 ± 0.2 MJ/m 3 , respectively, but densification occurred at around 7% lower strain for the graded structures. Several characteristic properties of SLM aluminium lattices, including their effective elastic modulus and Gibson-Ashby coefficients, C 1 and α, were determined; these can form the basis of new design methodologies for superior components in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.