Aflatoxin B1 (AFB1) and M1 (AFM1) are mycotoxins produced by numerous Aspergillus species in pre- or post-harvest cereals and milk. AFB1 and AFM1 display a potent economic loss in livestock and also cause severe immunological problems. The aims of this study were to: evaluate a new AFB1 and AFM1-binding/degrading micro-organism for biological detoxification; examine its ability to degrade AFB1 and AFM1 in liquid medium; and evaluate its potential for in vivo preventative effects against AFB1- and AFM1-induced immunomodulation in mice. Lactobacillus plantarum MON03 (LP) isolated from Tunisian artisanal butter was found to display significant binding ability to AFB1 and AFM1 in PBS (i.e. 82% and 89%, respectively) within 24 h of incubation and able to tolerate gastric acidity, have strongly hydrophilic cells surface properties, and adhere efficacy to Caco-3 cells in vitro. The in vivo study was conducted using Balb/c mice that received by oral gavage vehicle (control), LP only (2 × 10(9) CFU/L, ~2 g/kg BW), AFB1 or AFM1 alone (0.25 and 0.27 mg/kg, respectively), or AFB1 + LP or AFM1 + LP daily for 15 days. Compared to in control mice, treatments with AFB1 and AFM1 led to significantly decreased body weight gains, histopathological changes, and decrements in all hematologic and immune parameters assessed. Co-treatment with LP strongly reduced the adverse effects of each mycotoxin. In fact, the mice receiving AFB1 + LP or AFM1 + LP co-treatment displayed no significant differences in the assayed parameters as compared to the control mice. By itself, the bacteria alone had no adverse effects in the mice. From these data, it is concluded that the tested bacteria could be beneficial in biotechnology detoxification of contaminated food and feed for humans and animals.
The removal of Compton scattered photons included within the pulse height window is recognized as one of the most difficult noise problems in the restoration of nuclear medicine images. A new approach to Compton scatter correction based on factor analysis of dynamic structures (FADS) is presented in this study. The method requires all of the energy information. Acquisition of data can be performed either by list-mode or frame-mode. While the former presents some theoretical advantages, the latter is actually used in this work. Two factors are extracted by FADS, unfortunately no pure photopeak factor can be found by the algorithm. These rough factors lead to incorrect factor images. The innovation reported here is the use of a constrained photopeak factor. This novel algorithm is evaluated both on planar imaging and SPECT data using Monte Carlo simulations and real phantoms. A comparison with the modified method of Jaszczak is also presented. Different parameters are significantly improved with our recombination method in SPECT studies, particularly after attenuation compensation by the iterative method of Chang. Compared with the subtraction method the contrast is increased by 1.5 for planar Monte Carlo simulations and the scatter fraction is reduced four times with our recombination method.
Nanomaterials have increasingly emerged as potential pollutants to aquatic organisms. Nanomaterials are known to be taken up by hemocytes of marine invertebrates including Mytilus galloprovincialis. Indeed, assessments of hemocyte-related parameters are a valuable tool in the determination of potentials for nanoparticle (NP) toxicity. The present study assessed the effects from two size types of silver nanoparticles (AgNP: <50 nm and <100 nm) on the frequency of hemocytes subpopulations as immunomodulation biomarkers exposed in a mollusk host. Studies were performed using exposures prior to and after inhibition of potential NP uptake pathways (i.e. clathrin- and caveolae-mediated endocytosis) and over different durations of exposure (3, 6 and 12 h). Differential hemocyte counts (DHC) revealed significant variations in frequency of different immune cells in mussels exposed for 3 hr to either AgNP size. However, as exposure duration progressed cell levels were subsequently differentially altered depending on particle size (i.e. no significant effects after 3 h with larger AgNP). AgNP effects were also delayed/varied after blockade of either clathrin- or caveolae-mediated endocytosis. The results also noted significant negative correlations between changes in levels hyalinocytes and acidophils or in levels basophils and acidophils as a result of AgNP exposure. From these results, we concluded AgNP effects on mussels were size and duration of exposure dependent. This study highlighted how not only was NP size important, but that differing internalization mechanisms could be key factors impacting on the potential for NP in the environment to induce immunomodulation in a model/test sentinel host like M. galloprovincialis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.