Interactions between cationic and aromatic side chains of amino acid residues, the so-called cation-pi interaction, are thought to contribute to the overall stability of the folded structure of peptides and proteins. The transferred NOE NMR structure of the G(t)alpha(340-350) peptide bound to photoactivated rhodopsin (R*) geometrically suggests a cation-pi interaction stabilizing the structure between the epsilon-amine of Lys341 and the aromatic ring of the C-terminal residue, Phe350. This interaction has been explored by varying substituents on the phenyl ring to alter the electron density of the aromatic ring of Phe350 and observing the impact on binding of the peptide to R*. The results suggest that while a cation-pi interaction geometrically exists in the G(t)alpha(340-350) peptide when bound to R*, its energetic contribution to the stability of the receptor-bound structure is relatively insignificant, as it was not observed experimentally. The presence of an adjacent and competing salt-bridge interaction between the epsilon-amine of Lys341 and the C-terminal carboxylate of Phe350 effectively shields the charge of the ammonium group. Experimental data supporting a significant cation-pi interaction can be regained through a series of Phe350 analogues where the C-terminal carboxyl has been converted to the neutral carboxamide, thus eliminating the shielding salt-bridge. TrNOE NMR experiments confirmed the existence of the cation-pi interaction in the carboxamide analogues. Various literature estimates of the strength of cation-pi interactions, including some that estimate strengths in excess of salt-bridges, are compromised by omission of the relevant anion in the calculations.
To probe the interaction between transducin (G(t)) and photoactivated rhodopsin (R*), 14 analog peptides were designed and synthesized restricting the backbone of the R*-bound structure of the C-terminal 11 residues of G(t)alpha derived by transferred nuclear Overhauser effect (TrNOE) NMR. Most of the analogs were able to bind R*, supporting the TrNOE structure. Improved affinities of constrained peptides indicated that preorganization of the bound conformation is beneficial. Cys347 was found to be a recognition site; particularly, the free sulfhydryl of the side chain seems to be critical for R* binding. Leu349 was another invariable residue. Both Ile and tert-leucine (Tle) mutations for Leu349 significantly reduced the activity, indicating that the Leu side chain is in intimate contact with R*. The structure of R* was computer generated by moving helix 6 from its position in the crystal structure of ground-state rhodopsin (R) based on various experimental data. Seven feasible complexes were found when docking the TrNOE structure with R* and none with R. The analog peptides were modeled into the complexes, and their binding affinities were calculated. The predicted affinities were compared with the measured affinities to evaluate the modeled structures. Three models of the R*/G(t)alpha complex showed strong correlation to the experimental data.
Light activated rhodopsin interacts with domains on all three subunits of transducin. Two of these domains, the C-terminal regions of the alpha and gamma subunits mimic the ability of transducin to stabilize the active conformation of rhodopsin, metarhodopsin II, but display different roles in transducin activation process. Whether the interactions are with the same or different complimentary sites on Meta II is unknown. We have used chemo-selective thioalkylation of rhodopsin and UV/visible spectroscopy to show that interactions with transducin C-terminal domains can be selectively disrupted. These data provide evidence that formal structural determinants on Meta II for these domains of transducin are different. In a set of complimentary experiments we examined the reactivity of Meta II species produced in the presence of the Gtalpha and Gtgamma subunit peptides to hydroxylamine. Analysis of the rates of Meta II decay confirms that the conformational states of Meta II when bound to Gtalpha and Gtbetagamma represent distinct signaling states of rhodopsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.