AimsA significant increase in congestive heart failure (CHF) was reported when the anti-ErbB2 antibody trastuzumab was used in combination with the chemotherapy drug doxorubicin (Dox). The aim of the present study was to investigate the role(s) of miRNAs in acute Dox-induced cardiotoxicity.Methods and resultsNeuregulin-1-ErbB signalling is essential for maintaining adult cardiac function. We found a significant reduction in ErbB4 expression in the hearts of mice after Dox treatment. Because the proteasome pathway was only partially involved in the reduction of ErbB4 expression, we examined the involvement of microRNAs (miRs) in the reduction of ErbB4 expression. miR-146a was shown to be up-regulated by Dox in neonatal rat cardiac myocytes. Using a luciferase reporter assay and overexpression of miR-146a, we confirmed that miR-146a targets the ErbB4 3′UTR. After Dox treatment, overexpression of miR-146a, as well as that of siRNA against ErbB4, induced cell death in cardiomyocytes. Re-expression of ErbB4 in miR-146a-overexpressing cardiomyocytes ameliorated Dox-induced cell death. To examine the loss of miR-146a function, we constructed ‘decoy’ genes that had tandem complementary sequences for miR-146a in the 3′UTR of a luciferase gene. When miR-146a ‘decoy’ genes were introduced into cardiomyocytes, ErbB4 expression was up-regulated and Dox-induced cell death was reduced.ConclusionThese findings suggested that the up-regulation of miR-146a after Dox treatment is involved in acute Dox-induced cardiotoxicity by targeting ErbB4. Inhibition of both ErbB2 and ErbB4 signalling may be one of the reasons why those patients who receive concurrent therapy with Dox and trastuzumab suffer from CHF.
Retrovirus insertion-mediated random mutagenesis was applied in 3T3-L1 preadipocyte cells to better understand the molecular basis of obesity (the expansion of individual adipocytes). We found that tryptophan hydroxylase-1, a rate-limiting enzyme for the synthesis of serotonin (5-HT), is expressed in adipocytes and is required for their differentiation. A 5-HT type 2A receptor (5-HT(2A)R) antagonist, ketanserin, and a 5-HT(2c)R antagonist, SB-242084, inhibited adipocyte differentiation. Because 5-HT(2c)R mRNA levels are up-regulated during adipocyte differentiation and micro-RNA (miR)-448 is located in the fourth intron of Htr2c, we also studied the role of miR-448 in 3T3-L1 cells. Through a bioinformatics approach, Krüppel-like factor 5 (KLF5) was identified as a potential target of miR-448. Using a luciferase reporter assay, we confirmed that miR-448 targets the Klf5 3'-intranslated region. Overexpression of miR-448 reduced the expression of Klf5 and adipocyte differentiation, which was confirmed by the reduced expression of adipogenic genes and triglyceride accumulation. To examine the loss of miR-448 function, we constructed a decoy gene that had tandem complementary sequences for miR-448 in the 3'-untranslated region of a luciferase gene under the control of a cytomegalovirus promoter. When the miR-448 decoy gene was introduced into 3T3-L1 preadipocytes, KLF5 was up-regulated and triglyceride concentration was increased. In this study, we identified the regulation of adipocyte differentiation by 5-HT, 5-HT(2A)R, and 5-HT(2C)R. miR-448-mediated repression of KLF5 was identified as a negative regulator for adipocyte differentiation.
MicroRNAs (miRNAs), small noncoding RNAs, are negative regulators of gene expression and play important roles in gene regulation in the heart. To examine the role of miRNAs in the expression of the two isoforms of the cardiac myosin heavy chain (MHC) gene, ␣-and -MHC, which regulate cardiac contractility, endogenous miRNAs were downregulated in neonatal rat ventricular myocytes (NRVMs) using lentivirus-mediated small interfering RNA (siRNA) against Dicer, an essential enzyme for miRNA biosynthesis, and MHC expression levels were examined. As a result, Dicer siRNA could downregulate endogenous miRNAs simultaneously and the -MHC gene but not ␣-MHC, which implied that specific miRNAs could upregulate the -MHC gene. Among 19 selected miRNAs, miR-27a was found to most strongly upregulate the -MHC gene but not ␣-MHC. Moreover, -MHC protein was downregulated by silencing of endogenous miR-27a. Through a bioinformatics screening using TargetScan, we identified thyroid hormone receptor 1 (TR1), which negatively regulates -MHC transcription, as a target of miR-27a. Moreover, miR-27a was demonstrated to modulate -MHC gene regulation via thyroid hormone signaling and to be upregulated during the differentiation of mouse embryonic stem (ES) cells or in hypertrophic hearts in association with -MHC gene upregulation. These findings suggested that miR-27a regulates -MHC gene expression by targeting TR1 in cardiomyocytes.
The mechanisms that lead from obesity to atherosclerotic disease are not fully understood. Obesity involves angiogenesis in which vascular endothelial growth factor-A (VEGF-A) plays a key role. On the other hand, vascular endothelial growth factor-C (VEGF-C) plays a pivotal role in lymphangiogenesis. Circulating levels of VEGF-A and VEGF-C are elevated in sera from obese subjects. However, relationships of VEGF-C with atherosclerotic risk factors and atherosclerosis are unknown. We determined circulating levels of VEGF-A and VEGF-C in 423 consecutive subjects not receiving any drugs at the Health Evaluation Center. After adjusting for age and gender, VEGF-A levels were significantly and more strongly correlated with the body mass index (BMI) and waist circumference than VEGF-C. Conversely, VEGF-C levels were significantly and more closely correlated with metabolic (e.g., fasting plasma glucose, hemoglobin A1c, immunoreactive insulin, and the homeostasis model assessment of insulin resistance) and lipid parameters (e.g., triglycerides, total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C), and non-high-density-lipoprotein cholesterol (non-HDL-C)) than VEGF-A. Stepwise regression analyses revealed that independent determinants of VEGF-A were the BMI and age, whereas strong independent determinants of VEGF-C were age, triglycerides, and non-HDL-C. In apolipoprotein E-deficient mice fed a high-fat-diet (HFD) or normal chow (NC) for 16 weeks, levels of VEGF-A were not significantly different between the two groups. However, levels of VEGF-C were significantly higher in HFD mice with advanced atherosclerosis and marked hypercholesterolemia than NC mice. Furthermore, immunohistochemistry revealed that the expression of VEGF-C in atheromatous plaque of the aortic sinus was significantly intensified by feeding HFD compared to NC, while that of VEGF-A was not. In conclusion, these findings demonstrate that VEGF-C, rather than VEGF-A, is closely related to dyslipidemia and atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.