More than 10,000 monogenic inherited disorders have been identified, affecting millions of people worldwide. Among these are autosomal dominant mutations, where inheritance of a single copy of a defective gene can result in clinical symptoms. Genes in which dominant mutations manifest as late-onset adult disorders include BRCA1 and BRCA2, which are associated with a high risk of breast and ovarian cancers 1 , and MYBPC3, mutation of which causes hypertrophic cardiomyopathy (HCM) 2 . Because of their delayed manifestation, these mutations escape natural selection and are often transmitted to the next generation. Consequently, the frequency of some of these founder mutations in particular human populations is very high. For example, the MYBPC3 mutation is found at frequencies ranging from 2% to 8% 3 in major Indian populations, and the estimated frequency of both BRCA1 and BRCA2 mutations among Ashkenazi Jews exceeds 2% 4 .HCM is a myocardial disease characterized by left ventricular hypertrophy, myofibrillar disarray and myocardial stiffness; it has an estimated prevalence of 1:500 in adults 5 and manifests clinically with heart failure. HCM is the commonest cause of sudden death in otherwise healthy young athletes. HCM, while not a uniformly fatal condition, has a tremendous impact on the lives of individuals, including physiological (heart failure and arrhythmias), psychological (limited activity and fear of sudden death), and genealogical concerns. MYBPC3 mutations account for approximately 40% of all genetic defects causing HCM and are also responsible for a large fraction of other inherited cardiomyopathies, including dilated cardiomyopathy and left ventricular non-compaction 6 . MYBPC3 encodes the thick filament-associated cardiac myosin-binding protein C (cMyBP-C), a signalling node in cardiac myocytes that contributes to the maintenance of sarcomeric structure and regulation of both contraction and relaxation 2 .Current treatment options for HCM provide mostly symptomatic relief without addressing the genetic cause of the disease. Thus, the development of novel strategies to prevent germline transmission of founder mutations is desirable. One approach for preventing second-generation transmission is preimplantation genetic diagnosis (PGD) followed by selection of non-mutant embryos for transfer in the context of an in vitro fertilization (IVF) cycle. When only one parent carries a heterozygous mutation, 50% of the embryos should be mutationfree and available for transfer, while the remaining carrier embryos are discarded. Gene correction would rescue mutant embryos, increase the number of embryos available for transfer and ultimately improve pregnancy rates.Recent developments in precise genome-editing techniques and their successful applications in animal models have provided an option for correcting human germline mutations. In particular, CRISPR-Cas9 is a versatile tool for recognizing specific genomic sequences and inducing DSBs 7-10 . DSBs are then resolved by endogenous DNA repair mechanisms, prefer...
Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.
The genetic integrity of iPSCs is an important consideration for therapeutic application. In this study, we examine the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24-72 years). We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues. The frequency of mtDNA defects in iPSCs increased with age, and many mutations were non-synonymous or resided in RNA coding genes and thus can lead to respiratory defects. Our results highlight a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.