This paper presents a wearable metasurface multiple-input multiple-output (MIMO) antenna for biomedical applications in a 5 GHz wireless body area network (WBAN) with broadband, circular polarization (CP), and high gain. The physical properties of the MIMO antenna element and the principles of polarization conversion are analyzed in-depth using characteristic mode analysis. For the proposed MIMO antenna, the measured −10 dB impedance bandwidth is 34.87% (4.76–6.77 GHz), and the 3 dB axial ratio bandwidth is 22.94% (4.9–6.17 GHz). By adding an isolation strip, the measured isolation of the two antenna elements is greater than 19.85 dB. The overall size of the MIMO antenna is 1.67λ0 × 0.81λ0 × 0.07λ0 at 5.6 GHz, and the maximum gain is 7.95 dBic. The envelope correlation coefficient (ECC) is less than 0.007, with the maximum diversity gain greater than 9.98 dB, and the channel capacity loss is less than 0.29 b/s/Hz. The specific absorption rate (SAR) of the wearable MIMO antenna is simulated by the human tissue model, which proves that the proposed antenna conforms to international standards and is harmless to humans. The proposed wearable metasurface MIMO antenna has CP, broadband, high gain, low ECC, and low SAR, which can be used in wearable devices for biomedical applications.
In this paper, a low-profile, broadband metasurface antenna for polarization conversion is proposed based on characteristic mode analysis (CMA). A new type of metasurface unit with a partially chamfered symmetrical triangular structure is designed. The inherent physical characteristics of the antenna are analyzed based on CMA, and the expected characteristic modes are selected for excitation at a suitable position. Slot-coupled feeding via microstrip line realizes the performance of wide impedance bandwidth and axial ratio bandwidth (ARBW). The measured -10 dB impedance bandwidth of 36.3% (4.38–6.32 GHz) and the 3 dB ARBW of 20.1% (5.41–6.62 GHz) are achieved. The left-hand circular polarization (LHCP) is realized, and the measured highest gain in the working frequency band is 6.05 dBic. The overall size of the designed and fabricated metasurface antenna is 0.58 λ0 × 0.58 λ0 × 0.07 λ0at 5 GHz. The proposed metasurface antenna can be well used in C-band satellite communications due to its low profile, broadband, and circular polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.