Accumulating clinical observations suggest pathogenesis beyond viral pneumonia and its secondary consequences in COVID-19 patients. In particular, many patients develop profound hyperinflammation and hypercoagulopathy with disseminated thrombogenesis and thromboembolism, which we observe also in a Swedish COVID-19 intensive care patient cohort. To understand these vascular manifestations, it is important to establish the potential vascular entry point(s) of the SARS-CoV-2 virus, i.e. which vascular cell types express the SARS-CoV-2 receptor ACE2. We present data that ACE2 is specifically and highly expressed in microvascular pericytes, but absent from endothelial cells, perivascular macrophages and fibroblasts. Mice with pericyte ablation show increased expression and release of Von Willebrand Factor from microvascular endothelial cells, suggesting that pericytes orchestrate thrombogenic responses in neighboring endothelial cells. Identifying pericytes rather than endothelial cells as the ACE2-expressing cells in the vasculature may explain why hypertension, diabetes and obesity are risk factors for severe COVID-19 patients, as these conditions are characterized by an impaired endothelial barrier function, allowing SARS-CoV-2 to reach and infect the pericytes that are normally shielded from the blood behind an intact endothelial barrier. This novel COVID-19-(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.
SummaryAngiopoietin 1 (Ang1) is an activating ligand for the endothelial receptor tyrosine kinase Tie2, whereas Ang2 acts as a contextdependent agonist or antagonist that has a destabilizing effect on the vasculature. The molecular mechanisms responsible for the versatile functions of Ang2 are poorly understood. We show here that Ang2, but not Ang1, induces Tie2 translocation to the specific cell-matrix contact sites located at the distal end of focal adhesions. The Ang2-specific Tie2 translocation was associated with distinct Tie2 activation and downstream signals which differed from those of Ang1, and led to impaired cell motility and weak cell-matrix adhesion. We demonstrate that the different oligomeric or multimeric forms of the angiopoietins induce distinct patterns of Tie2 trafficking; the lower oligomerization state of native Ang2 was crucial for the Ang2-specific Tie2 redistribution, whereas multimeric structures of Ang1 and Ang2 induced similar responses. The Ang2-specific Tie2 trafficking to cell-matrix contacts was also dependent on the cell substratum, a2b1-integrin-containing cell-matrix adhesion sites and intact microtubules. Our data indicate that the different subcellular trafficking of Tie2-Ang2 and Tie2-Ang1 complexes generates ligand-specific responses in the angiopoietin-Tie signaling pathway, including modulation of cell-matrix interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.