A composite of wide bandgap lithium-nickel-zinc-oxide (LNZ) and gadolinium-doped-cerium-oxide (GDC) was systematically analyzed for a low-temperature nanocomposite fuel cell in a so-called single-component configuration in which the electrodes and electrolyte form a homogenous mixture. We found that the operational principle of a single-layer fuel cell can be explained by electronic blocking by the oxide mixture with almost insulator-like properties in the operating voltage regime of the fuel cell, which will prevent short-circuiting, and by its catalytic properties that drive the fuel cell HOR and ORR reactions. The resistance to charge transport and leakage currents are dominant performance limiting factors of the single-component fuel cell. A test cell with Au as current collector reached a power density of 357 mWcm-2 at 550 o C. Changing the current collector to a Ni0.8Co0.15Al0.05LiO2 (NCAL) coated Ni foam produced 801 mWcm-2 , explained by better catalytic properties. However, utilizing NCAL coated Ni foam may actually turn the 1-layer fuel cell device into a traditional 3-layer (anode-electrolyte-cathode) structure. This work will help in improving the understanding of the underlying mechanisms of a single-layer fuel cell device important to further develop this potential energy technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.