The natural variation in quantity and quality of light modifies plant morphology, growth rate and concentration of biochemicals. The aim of two growth-room experiments was to study the combined effects of red (R) and far-red (FR) light and ultraviolet-B (UV-B) radiation on the concentrations of leaf phenolics and growth and morphology of silver birch ( Betula pendula Roth) seedlings. Analysis by high-performance liquid chromatography showed that the leaves exposed to supplemental FR relative to R contained higher concentrations of total chlorogenic acids and a cinnamic acid derivative than the leaves treated with supplemental R relative to FR. In contrast, concentration of a flavonoid, quercetin 3-galactoside, was higher in the R + + + + UV-B leaves than in the FR + + + + UV-B leaves. The UV-B induced production of kaempferols, chlorogenic acids and most quercetins were not modified by the R : FR ratio. Growth measurements showed that the leaf petioles and stems of FR seedlings were clearly longer than those of R seedlings, but leaf area was reduced by UV-B radiation. Results of these experiments show that exposure of silver birch seedlings to supplemental FR compared to R leads to fast elongation growth and accumulation of phenolic acids in the leaves.
We measured the concentrations of ultraviolet (UV)-absorbing phenolics varying in response to exclusion of either solar UV-B or both solar UV-A and UV-B radiations in leaves of grey alder (Alnus incana) and white birch (Betula pubescens) trees under field conditions. In alder leaves 20 and in birch leaves 13 different phenolic metabolites were identified. The response to UV exclusion varied between and within groups of phenolics in both tree species. The changes in concentration for some metabolites suggest effects of only UV-A or UV-B, which band being effective depending on the metabolite. For some other metabolites, the results indicate that UV-A and UV-B affect concentrations in the same direction, while for a few compounds there was evidence suggesting opposite effects of UV-A and UV-B radiation. Finally, the concentration of some phenolics did not significantly respond to solar UV. We observed only minor effects on the summed concentration of all determined phenolic metabolites in alder and birch leaves, thus indicating that measuring only total phenolics concentration may not reveal the effects of radiation. Here, we show that the appropriate biological spectral weighting functions for plant-protective responses against solar UV radiation extend in most cases -but not always -into the UV-A region and more importantly that accumulation of different phenolic metabolites follows different action spectra. This demonstrates under field conditions that some of the implicit assumptions of earlier research simulating ozone depletion and studying the effects of UV radiation on plant secondary metabolites need to be reassessed.
The effects of long‐term elevated UV‐B radiation on silver birch (Betula pendula Roth) seedlings were studied over three growing seasons in an outdoor experiment in Finland started 64 days after germination. One group of seedlings was exposed to a constant 50% increase in UV‐BCIE radiation, which corresponds to 20–25% of ozone depletion; another group received a small increase in UV‐A radiation and a third (the control group) received ambient solar radiation. Changes in growth appeared during the third growing season; the stems of the UV‐B treated seedlings were thinner and their height tended to be shorter compared with that of the control seedlings. In contrast, there were no UV‐B effects on biomass, bud burst, bud dry weights, leaf area, rust frequency index or chlorophyll concentrations in any of the summers. During the three‐year study, the flavonols were significantly increased by the elevated UV‐B only in the first growing season. The responses varied greatly among individual compounds; the most induced were the quercetin glycosides, while the main flavonols, myricetins, were reduced by the UV‐A control treatment. In the second summer phenolic acids, such as 3,4′‐dihydroxypropiophenone‐3‐glucoside, neochlorogenic acid and 5‐coumarylquinic acid, were increased by the UV‐B treatment. In the third year, the constitutive concentrations of phenolics were not affected by the UV‐B treatment.
In research concerning stratospheric ozone depletion, action spectra are used as biological spectral weighting functions (BSWFs) for describing the effects of UV radiation on plant responses. Our aim was to evaluate the appropriateness of six frequently used BSWFs that differ in effectiveness with increasing wavelength. The evaluation of action spectra was based on calculating the effective UV radiation doses according to 1-2) two formulations of the generalized plant action spectrum, 3) a spectrum for ultraviolet induced erythema in human skin, 4) a spectrum for the accumulation of a flavonol in Mesembryanthemum crystallinum, 5) a spectrum for DNA damage in alfalfa seedlings and 6) the plant growth action spectrum. We monitored effects of UV radiation on the concentration of individual UV absorbing metabolites and chlorophyll concentrations in leaves and growth responses of silver birch (Betula pendula) seedlings. Experiments were conducted outdoors using plastic films attenuating different parts of the UV spectrum. Chlorophyll concentrations and growth were not affected by the UV treatments. The response to UV radiation varied between and within groups of phenolics. In general, the observed responses of phenolic groups and individual flavonoids were best predicted by action spectra extending into the UV-A region with moderate effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.