Template-free preparation of layer-stacked hierarchical porous carbons from cheap pitch precursors for high-performance all-solid-state supercapacitors.
Millimeter-sized
activated carbon spheres are potential candidates
for industrial-scale CO2 capture. Millimeter-sized sulfur-doped
microporous activated carbon spheres were synthesized from poly(styrene–divinylbenzene),
a very cheap and easily operated resin product, in the present work
and studied for CO2 uptake. A series of sulfur-doped spherical
carbon materials were yielded through the sulfonation, oxidation,
carbonization, and KOH activation of the polymer precursors. In addition
to promoting the cross-linking of the polymer molecules, the sulfonic
substituents directly introduced sulfur functional groups into the
carbon materials after pyrolysis. The SCS-700 sample showed the best
CO2 adsorption performance, whose sulfur content reached
0.69 wt %, and exhibited a high surface area of 1526 m2 g–1 and a large pore volume of 0.726 cm3 g–1. The adsorbent showed high CO2 uptake
at both 25 °C (4.21 mmol g–1) and 50 °C
(2.54 mmol g–1) under ambient pressure due to its
abundant ultramicropores and a high proportion of oxidized sulfur
functional groups. Thanks to its high microporous volume of 0.617
cm3 g–1, the CO2 performance
at 8 bar was 10.66 mmol g–1 at 25 °C. The thermodynamics
indicated the exothermic and spontaneous nature of the adsorption
process, which was dominated by a physisorption mechanism. Furthermore,
the CO2 uptake curves on a TGA analyzer were fitted with
different kinetic models, and the fractional order model showed the
best agreement with the experimental data. The recycling curve of
SCS-700 exhibited excellent cyclic adsorption performance with no
significant capacity loss even after ten adsorption–desorption
cycles. It is suggested that this excellent CO2 uptake
was due to the synergistic effect of the well-developed microporous
structure and the oxidized sulfur-containing functional groups.
The modified iron porphyrins with
weak ligand (PF6
–, BF4
–) were prepared
by a gentle and cheap approach. The catalytic systems with modified
iron porphyrins and 1-butyl-3-methylimidazolium hexafluorophosphate
([Bmim]PF6) were used in the catalytic oxidative removal
of sulfur compounds from model oil under mild conditions. The effect
of anionic axial ligand on catalytic oxdative desulfurization performance
was investigated. Iron porphyrins with weak ligand exhibited higher
desulfurization performance, and the catalytic ability of catalysts
was FeIIITPP(PF6) > FeIIITPP(BF4) > FeIIITPPCl. A dual active model mechanism
was
proposed to illustrate this phenomenon of oxidative process. The system
of FeIIITPP(PF6) and [Bmim]PF6 could
be recycled for 6 times without evident decrease of desulfurization
efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.