The waste snail shell was screened to determine its efficiency as heterogeneous catalyst for biodiesel production via trans-esterification reaction. Prior to its use, the solid oxide material (shell) was calcined at 800°C for 4 h to convert CaCO 3 to CaO. Physicochemical analysis of waste cooking oil reveals the acid value (3.47 mg KOH/gm), density (0.9 g/cm 3 ), moisture content (0.1%) and kinematic viscosity (42.2) respectively. The prepared solid oxide catalyst was characterized using X-ray Fluorescence (XRF) and Fourier Transform Infrared Spectroscopy (FT-IR) methods. The catalytic activity of the catalyst was evaluated by the transesterification reaction under the following reaction conditions: temperature (60°C), time (3 h) and methanol to oil ratio (9:1) respectively. GC-MS analysis was used to characterize the fatty acid methyl ester composition. The research signified successful application of waste snail shell as heterogeneous catalyst for prospective economic preparation of heterogeneous catalyst. It also developed an unconditional avenue for using the waste snail shell as the catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.