High‐performance sensors based on molybdenum disulfide (MoS2) grown by sulfurization of sputtered molybdenum layers are presented. Using a simple integration scheme, it is found that the electrical conductivity of MoS2 films is highly sensitive to NH3 adsorption, consistent with n‐type semiconducting behavior. A sensitivity of 300 ppb at room temperature is achieved, showing the high potential of 2D transition metal‐dichalcogenides for sensing.
We report subnanometer modification enabled by an ultrafine helium ion beam. By adjusting ion dose and the beam profile, structural defects were controllably introduced in a few-layer molybdenum disulfide (MoS2) sample and its stoichiometry was modified by preferential sputtering of sulfur at a few-nanometer scale. Localized tuning of the resistivity of MoS2 was demonstrated and semiconducting, metallic-like, or insulating material was obtained by irradiation with different doses of He(+). Amorphous MoSx with metallic behavior has been demonstrated for the first time. Fabrication of MoS2 nanostructures with 7 nm dimensions and pristine crystal structure was also achieved. The damage at the edges of these nanostructures was typically confined to within 1 nm. Nanoribbons with widths as small as 1 nm were reproducibly fabricated. This nanoscale modification technique is a generalized approach that can be applied to various two-dimensional (2D) materials to produce a new range of 2D metamaterials.
Please cite this article in press as: R. Gatensby, et al., Controlled synthesis of transition metal dichalcogenide thin films for electronic applications, Appl. Surf. Sci. (2014) Two dimensional transition metal dichalcogenides (TMDs) are exciting materials for future applications in nanoelectronics, nanophotonics and sensing. In particular, sulfides and selenides of molybdenum (Mo) and tungsten (W) have attracted interest as they possess a band gap, which is important for integration into electronic device structures. However, the low throughput synthesis of high quality TMD thin films has thus far hindered the development of devices, and so a scalable method is required to fully exploit their exceptional properties. Within this work a facile route to the manufacture of devices from MoS 2 and WS 2 , grown by vapour phase sulfurisation of pre-deposited metal layers, is presented. Highly homogenous TMD films are produced over large areas. Fine control over TMD film thickness, down to a few layers, is achieved by modifying the thickness of the pre-deposited metal layer. The films are characterised by Raman spectroscopy, electron microscopy and X-ray photoelectron spectroscopy. The thinnest films exhibit photoluminescence, as predicted for monolayer MoS 2 films, due to confinement in two dimensions. By using shadow mask lithography, films with well-defined geometries were produced and subsequently integrated with standard microprocessing process flows and electrically characterised. In this way, MoS 2 based sensors were produced, displaying sensitivity to NH 3 down to 400 ppb. Our device manufacture is versatile, and is adaptable for future nanoscale (opto-) electronic devices as it is reproducible, cost effective and scalable up to wafer scale.
The saturation of two-photon absorption (TPA) in four types of layered transition metal dichalcogenides (TMDCs) (MoS 2 , WS 2 , MoSe 2 , WSe 2 ) was systemically studied both experimentally and theoretically. It was demonstrated that the TPA coefficient is decreased when either the incident pulse intensity or the thickness of the TMDC nanofilms increases, while TPA saturation intensity has the opposite behavior, under the excitation of 1.2 eV photons with a pulse width of 350 fs. A three-level excitonic dynamics simulation indicates that the fast relaxation of the excitonic dark states, the exciton−exciton annihilation, and the depletion of electrons in the ground state contribute significantly to TPA saturation in TMDC nanofilms. Large third-order nonlinear optical responses make these layered 2D semiconductors strong candidate materials for optical modulation and other photonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.