Conspectus The ongoing revolution of the natural sciences by the advent of machine learning and artificial intelligence sparked significant interest in the material science community in recent years. The intrinsically high dimensionality of the space of realizable materials makes traditional approaches ineffective for large-scale explorations. Modern data science and machine learning tools developed for increasingly complicated problems are an attractive alternative. An imminent climate catastrophe calls for a clean energy transformation by overhauling current technologies within only several years of possible action available. Tackling this crisis requires the development of new materials at an unprecedented pace and scale. For example, organic photovoltaics have the potential to replace existing silicon-based materials to a large extent and open up new fields of application. In recent years, organic light-emitting diodes have emerged as state-of-the-art technology for digital screens and portable devices and are enabling new applications with flexible displays. Reticular frameworks allow the atom-precise synthesis of nanomaterials and promise to revolutionize the field by the potential to realize multifunctional nanoparticles with applications from gas storage, gas separation, and electrochemical energy storage to nanomedicine. In the recent decade, significant advances in all these fields have been facilitated by the comprehensive application of simulation and machine learning for property prediction, property optimization, and chemical space exploration enabled by considerable advances in computing power and algorithmic efficiency. In this Account, we review the most recent contributions of our group in this thriving field of machine learning for material science. We start with a summary of the most important material classes our group has been involved in, focusing on small molecules as organic electronic materials and crystalline materials. Specifically, we highlight the data-driven approaches we employed to speed up discovery and derive material design strategies. Subsequently, our focus lies on the data-driven methodologies our group has developed and employed, elaborating on high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning. We discuss the general ideas, their working principles, and their use cases with examples of successful implementations in data-driven material discovery and design efforts. Furthermore, we elaborate on potential pitfalls and remaining challenges of these methods. Finally, we provide a brief outlook for the field as we foresee increasing adaptation and implementation of large scale data-driven approaches in material discovery and design campaigns.
Designing functional molecules and advanced materials requires complex design choices: tuning continuous process parameters such as temperatures or flow rates, while simultaneously selecting catalysts or solvents. To date, the development of data-driven experiment planning strategies for autonomous experimentation has largely focused on continuous process parameters, despite the urge to devise efficient strategies for the selection of categorical variables. Here, we introduce Gryffin, a general-purpose optimization framework for the autonomous selection of categorical variables driven by expert knowledge. Gryffin augments Bayesian optimization based on kernel density estimation with smooth approximations to categorical distributions. Leveraging domain knowledge in the form of physicochemical descriptors, Gryffin can significantly accelerate the search for promising molecules and materials. Gryffin can further highlight relevant correlations between the provided descriptors to inspire physical insights and foster scientific intuition. In addition to comprehensive benchmarks, we demonstrate the capabilities and performance of Gryffin on three examples in materials science and chemistry: (i) the discovery of non-fullerene acceptors for organic solar cells, (ii) the design of hybrid organic–inorganic perovskites for light-harvesting, and (iii) the identification of ligands and process parameters for Suzuki–Miyaura reactions. Our results suggest that Gryffin, in its simplest form, is competitive with state-of-the-art categorical optimization algorithms. However, when leveraging domain knowledge provided via descriptors, Gryffin outperforms other approaches while simultaneously refining this domain knowledge to promote scientific understanding.
Research challenges encountered across science, engineering, and economics can frequently be formulated as optimization tasks. In chemistry and materials science, recent growth in laboratory digitization and automation has sparked interest in optimization-guided autonomous discovery and closed-loop experimentation. Experiment planning strategies based on off-the-shelf optimization algorithms can be employed in fully autonomous research platforms to achieve desired experimentation goals with the minimum number of trials. However, the experiment planning strategy that is most suitable to a scientific discovery task is a priori unknown while rigorous comparisons of different strategies are highly time and resource demanding. As optimization algorithms are typically benchmarked on low-dimensional synthetic functions, it is unclear how their performance would translate to noisy, higher-dimensional experimental tasks encountered in chemistry and materials science. We introduce Olympus, a software package that provides a consistent and easy-to-use framework for benchmarking optimization algorithms against realistic experiments emulated via probabilistic deep-learning models. Olympus includes a collection of experimentally derived benchmark sets from chemistry and materials science and a suite of experiment planning strategies that can be easily accessed via a user-friendly Python interface. Furthermore, Olympus facilitates the integration, testing, and sharing of custom algorithms and user-defined datasets. In brief, Olympus mitigates the barriers associated with benchmarking optimization algorithms on realistic experimental scenarios, promoting data sharing and the creation of a standard framework for evaluating the performance of experiment planning strategies.
Optimization strategies driven by machine learning, such as Bayesian optimization, are being explored across experimental sciences as an efficient alternative to traditional design of experiment. When combined with automated laboratory...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.