Our results highlight the need to improve TB control and policies in correctional facilities. Improving treatment outcomes of prisoners will also prevent transmission to other prisoners, their family members, and health professionals.
The efficacy of antimicrobial drugs against Mycobacterium tuberculosis, an intracellular bacterial pathogen, is generally first established by testing compounds against bacteria in axenic culture. However, inside infected macrophages, bacteria encounter an environment which differs substantially from broth culture and are subject to important host-dependent pharmacokinetic phenomena which modulate drug activity. Here, we describe how pH-dependent partitioning drives asymmetric antimicrobial drug distribution in M. tuberculosis-infected macrophages. Specifically, weak bases with moderate activity against M. tuberculosis (fluoxetine, sertraline, and dibucaine) were shown to accumulate intracellularly due to differential permeability and relative abundance of their ionized and nonionized forms. Nonprotonatable analogs of the test compounds did not show this effect. Neutralization of acidic organelles directly with ammonium chloride or indirectly with bafilomycin A1 partially abrogated the growth restriction of these drugs. Using high-performance liquid chromatography, we quantified the degree of accumulation and reversibility upon acidic compartment neutralization in macrophages and observed that accumulation was greater in infected than in uninfected macrophages. We further demonstrate that the efficacy of a clinically used compound, clofazimine, is augmented by pH-based partitioning in a macrophage infection model. Because the parameters which govern this effect are well understood and are amenable to chemical modification, this knowledge may enable the rational development of more effective antibiotics against tuberculosis.
Tuberculosis (Tb), caused by Mycobacterium tuberculosis (Mtb), is responsible for more than a million deaths annually. In the latent phase of infection, Mtb uses lipids as the source of carbon and energy for its survival. The lipid molecules are transported across the cell wall via multiple transport systems. One such set of widely present and less-studied transporters is the Mammalian-cell-entry (Mce) complexes. Here, we report the properties of the substrate-binding proteins (SBPs; MceA-F) of the Mce1 and Mce4 complexes from Mtb which are responsible for the import of mycolic acid/fatty acids, and cholesterol respectively. MceA-F are composed of four domains namely, transmembrane, MCE, helical and tail domains. Our studies show that MceA-F are predominantly monomeric when purified individually and do not form homohexamers unlike the reported homologs (MlaD, PqiB and LetB) from other prokaryotes. The crystal structure of MCE domain of Mtb Mce4A (MtMce4A39-140) determined at 2.9 Å shows the formation of an unexpected domain-swapped dimer in the crystals. Further, the purification and small-angle X-ray scattering (SAXS) analysis on MtMce1A, MtMce4A and their domains suggest that the helical domain requires hydrophobic interactions with the detergent molecules for its stability. Combining all the experimental data, we propose a heterohexameric arrangement of MtMceA-F SBPs, where the soluble MCE domain of the SBPs would remain in the periplasm with the helical domain extending to the lipid layer forming a hollow channel for the transport of lipids across the membranes. The tail domain would reach the cell surface assisting in lipid recognition and binding.
The outcome of many infections depends on the initial interactions between agent and host. Aiming at elucidating the effect of the M. tuberculosis Mce1 protein complex on host transcriptional and immunological responses to infection with M. tuberculosis, RNA from murine macrophages at 15, 30, 60 min, 4 and 10 hrs post-infection with M. tuberculosis H37Rv or D-mce1 H37Rv was analyzed by whole-genome microarrays and RT-QPCR. Immunological responses were measured using a 23-plex cytokine assay. Compared to uninfected controls, 524 versus 64 genes were up-regulated by 15 min post H37Rvand D-mce1 H37Rv-infection, respectively. By 15 min post-H37Rv infection, a decline of 17 cytokines combined with upregulation of Ccl24 (26.5-fold), Clec4a2 (23.2-fold) and Pparc (10.5-fold) indicated an anti-inflammatory response initiated by IL-13. Down-regulation of Il13ra1 combined with up-regulation of Il12b (30.2-fold), suggested switch to a pro-inflammatory response by 4 hrs post H37Rv-infection. Whereas no significant change in cytokine concentration or transcription was observed during the first hour post D-mce1 H37Rv-infection, a significant decline of IL-1b, IL-9, IL-13, Eotaxin and GM-CSF combined with increased transcription of Il12b (25.1-fold) and Inb1 (17.9-fold) by 4 hrs, indicated a pro-inflammatory response. The balance between pro-and anti-inflammatory responses during the early stages of infection may have significant bearing on outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.