In this paper, we present a new parallel algorithm for time dependent problems based on coupling parareal with non-overlapping domain decomposition method in order to increase parallelism in time and in space. For this we focus on the iterative methods of parallization in space to solve the interface problem like Neumann-Neumann method. In the new algorithm, the coarse temporel propagator is defined on the global domain and the Neumann-Neumann method is chosen as a fine propagator with a few iterations. We present the rigorous convergence analysis of the new coupled algorithm on bounded time interval. Numerical experiments illustrate the performance of this new algorithm and confirm our analysis. RÉSUMÉ. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dé-pendant du temps basé sur le couplage du pararéel avec les méthodes de décomposition de domaine sans recouvrement afin d'augmenter le parallélisme dans le temps et l'espace. Nous nous concen-trons sur les méthodes itératives de parallélisation en espace pour résoudre le problème d'interface par la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est dé-finie sur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur fin avec quelques itérations. Nous présentons l'analyse rigoureuse de convergence du nouvel algorithme couplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances de ce nouvel algorithme et confirment notre analyse. Dans ce papier, nous présentons un nouvel algorithme parallèle pour les problèmes dépendantdu temps basé sur le couplage du pararéel avec les méthodes de décomposition de domainesans recouvrement afin d’augmenter le parallélisme dans le temps et l’espace. Nous nous concentronssur les méthodes itératives de parallélisation en espace pour résoudre le problème d’interfacepar la méthode de Neumann-Neumann. Dans ce nouvel algorithme, le propagateur grossier est définiesur le domaine global et la méthode de Neumann-Neumann est choisi pour le propagateur finavec quelques itérations. Nous présentons l’analyse rigoureuse de convergence du nouvel algorithmecouplé sur un intervalle de temps borné. Des expèriences numériques illustrent les performances dece nouvel algorithme et confirment notre analyse.
This work is concerned with the boundary data completion problem related to the heat equation in the special case of an annular domain. We first reformulate this inverse problem into an interfacial equation involving Steklov‐Poincaré operator based on fictitious domain decomposition techniques. We present some theoretical results. For solving the problem under consideration, we suggest a new numerical point of view which helps to reduce the computational cost using the Schur complement algorithm. We perform then the convergence analysis of this new approach in the annular domain. Several numerical experiments are shown to illustrate the efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.