One of the obstacles to displacing petroleum-based polyols with soy-based polyols in rigid urethane foam formulations is foam shrinkage, especially at displacements greater than 50%.
A series of over 30 differential equations were solved to model experimental data on urethane foam formation. Methyl formate and C5−C6 hydrocarbons were used as physical blowing agents, and water was used as a chemical blowing agent. The rate of evaporation of the physical blowing agents was estimated using an overall mass-transfer coefficient times the difference in activity in the gas phase inside the bubbles and in the resin walls of the bubbles. The rate of CO 2 diffusion was expressed as the overall mass-transfer coefficient times the rate of CO 2 generation. The overall mass-transfer coefficient was found to decrease to near zero as the gel point of the resin was approached. Only one fitted parameter was used for the overall mass-transfer calculation for all blowing agents. The simulation results for foam height agree with the experimental data. Bubble growth and bubble pressure were simulated for the first time as compared to the available literature.
A computer-based simulation for rigid polyurethane foam-forming reactions was compared with experimental data for six blowing agents including methyl formate and C5-C6 hydrocarbons. Evaporation of blowing agent was modeled as an overall mass transfer coefficient times the difference in activity of the blowing agent in the gas foam cells versus the resin walls of the cells. Successful modeling hinged upon use of a mass transfer coefficient that decreased to near zero as the foam resin approached its gel point. Modeling on density agreed with experimental measurements. The fitted parameters allowed for interpretations of the final disposition of the blowing agent, especially, if the blowing agent successfully led to larger foam cells versus being entrapped in the resin. The only component-specific fitted parameters used in the modeling was the activity coefficient that was lower for methyl formate than the value used for hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.