B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common type of cancer in children. Dramatic improvements in primary therapy for childhood ALL have led to an overall cure rate of 80 %, providing opportunities for innovative combined-modality strategies that would increase cure rates while reducing the toxic side effects of current intensive regimens. In this study, we report that indole-3-carbinol (I3C), a natural phytochemical found in cruciferous vegetables, had anti-leukemic properties in BCP-ALL NALM-6 cells. I3C induced cell growth inhibition by G1 cell cycle arrest and triggered apoptosis in a dose- and time-dependent manner. p53, p21, and Bax proteins showed increased expression after I3C treatment. Real-time PCR analysis of pro-apoptotic p53 target genes revealed up-regulation of PUMA, NOXA, and Apaf-1. I3C also suppressed constitutive nuclear factor-κB (NF-κB) activation and inhibited the protein expression of NF-kappa B-regulated antiapoptotic (IAP1, Bcl-xL, Bcl-2, XIAP) and proliferative (c-Myc) gene products. Coadministration of I3C with the topoisomerase II inhibitor, doxorubicin, potentiates cytotoxic effects compared with either agent alone. Apoptosis induction by the drug combination was associated with enhanced caspase-9 activation and PARP cleavage. Furthermore, I3C abolished doxorubicin-induced NF-κB activity as evidenced by decreased nuclear accumulation of p65, inhibition of IκBα phosphorylation and its degradation, and decreased NF-κB DNA-binding activity. Western blot analysis revealed that doxorubicin-induced Bcl-2 protein expression was inhibited by I3C. Overall, our results indicated that using nontoxic agents, such as I3C, in combination with anthracyclines might provide a new insight into the development of novel combination therapies in childhood BCP-ALL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.