Summary Myeloid sarcoma is an extramedullary tumour that typically occurs in the setting of acute myeloid leukaemia (AML), or myeloproliferative disorders. In AML, two types of mutations in Fms‐like tyrosine kinase 3 (FLT3) have been described; internal tandem duplications (ITD) and point mutations at aspartic acid residue 835 (D835). We analysed 24 myeloid sarcoma specimens from 20 patients for FLT3 ITD and D835 mutations. FLT3 ITD mutations were identified in three of 20 cases (15%); no D835 mutations were identified. The ITD inserts ranged in size from 33 to 198 base pairs (bp) and represented approximately 20–40% of the FLT3 alleles. Two cases showed discordance in FLT3 ITD mutational status. In one case, the leukaemia specimen was positive for a FLT3 ITD mutation and the myeloid sarcoma specimen was negative. In the second case, the myeloid sarcoma was positive for a FLT3 ITD mutation at diagnosis, but negative in subsequent relapse samples. Our findings suggest that small molecule inhibitors of FLT3 may be useful therapeutic agents for treatment of myeloid sarcomas‐containing FLT3 mutations, however, the potential for discordance between the leukaemia and myeloid sarcoma, necessitates that the myeloid sarcoma tumour itself be analysed for FLT3 mutations.
BackgroundPreviously, we had developed and manufactured an oligonucleotide fluorescence in situ hybridization (OligoFISH) probe panel based on the most clinically sensitive chromosomes found in a reference set of bladder carcinoma cases. The panel was clinically validated for use as a diagnostic and monitoring assay for bladder cancer, reaching 100% correlation with the results of the UroVysion test. After 1 year of using this probe panel, we present here the comparison of cytology, cystoscopy, and pathology findings to the OligoFISH probe panel results to calculate its clinical performance.Materials and methodsIn order to calculate clinical performance, we compared the OligoFISH results to the cytology and cystoscopy/pathology findings for 147 initial diagnoses and 399 recurrence monitorings. Finally, we compared clinical performance to published values for the UroVysion test, including both low- and high-grade tumors.ResultsChromosomes 3, 6, 7, and 20 were highly involved in bladder carcinoma aneuploidy. At the initial diagnosis, we obtained 90.5% (95% confidence interval [CI]: 84.5%–94.7%) accuracy, 96.8% sensitivity (95% CI: 91.0%–99.3%), 79.2% specificity (95% CI: 65.9%–87.8%), 89.2% positive predictive value (PPV; 95% CI: 81.5%–94.5%), and 93.3% negative predictive value (NPV; 95% CI: 81.7%–97.3%). When monitoring for recurrence, we obtained 85.2% accuracy (95% CI: 81.3%–88.5%), 82.0% sensitivity (95% CI: 76.0%–87.1%), 88.4% specificity (95% CI: 83.2%–92.5%), 87.7% PPV (95% CI: 82.1%–92.0%), and 83.0% NPV (95% CI: 77.3%–87.8%). When looking at low- and high-grade tumors, the test showed 100% sensitivity for high-grade tumors (95% CI: 92.5%–100%) and 87.5% sensitivity (95% CI: 68.8%–95.5%) for low-grade tumors. All the clinical parameters for the OligoFISH panel were higher than the UroVysion test’s published performance. We found significantly higher clinical sensitivity and NPV at initial diagnosis and significantly higher specificity and PPV for recurrence.ConclusionThe OligoFISH probe panel is a fast, easy, and reproducible test for bladder cancer diagnosis and monitoring, with excellent clinical performance and utility.
The primary objective of this study is to detect biomarkers and develop models that enable the identification of clinically significant prostate cancer and to understand the biologic implications of the genes involved. Peripheral blood samples (1018 patients) were split chronologically into independent training (n = 713) and validation (n = 305) sets. Whole transcriptome RNA sequencing was performed on isolated phagocytic CD14+ and non-phagocytic CD2+ cells and their gene expression levels were used to develop predictive models that correlate to adverse pathologic features. The immune-transcriptomic model with the highest performance for predicting adverse pathology, based on a subtraction of the log-transformed expression signals of the two cell types, displayed an area under the curve (AUC) of the receiver operating characteristic of 0.70. The addition of biomarkers in combination with traditional clinical risk factors (age, serum prostate-specific antigen (PSA), PSA density, race, digital rectal examination (DRE), and family history) enhanced the AUC to 0.91 and 0.83 for the training and validation sets, respectively. The markers identified by this approach uncovered specific pathway associations relevant to (prostate) cancer biology. Increased phagocytic activity in conjunction with cancer-associated (mis-)regulation is also represented by these markers. Differential gene expression of circulating immune cells gives insight into the cellular immune response to early tumor development and immune surveillance.
PurposeThe ability to test for and detect prostate cancer with minimal invasiveness has the potential to reduce unnecessary prostate biopsies. This study was conducted as part of a clinical investigation for the development of an OligoFISH® probe panel for more accurate detection of prostate cancer.Materials and methodsOne hundred eligible male patients undergoing transrectal ultrasound biopsies were enrolled in the study. After undergoing digital rectal examination with pressure, voided urine was collected in sufficient volume to prepare at least two slides using ThinPrep. Probe panels were tested on the slides, and 500 cells were scored when possible. From the 100 patients recruited, 85 had more than 300 cells scored and were included in the clinical performance calculations.ResultsChromosomes Y, 7, 10, 20, 6, 8, 16, and 18 were polysomic in most prostate carcinoma cases. Of these eight chromosomes, chromosomes 7, 16, 18, and 20 were identified as having the highest clinical performance as a fluorescence in situ hybridization test and used to manufacture the fluorescence in situ hybridization probe panels. The OligoFISH® probes performed with 100% analytical specificity. When the OligoFISH® probes were compared with the biopsy results for each individual, the test results highly correlated with positive and negative prostate biopsy pathology findings, supporting their high specificity and accuracy. Probes for chromosomes 7, 16, 18, and 20 showed in the receiver operator characteristics analysis an area under the curve of 0.83, with an accuracy of 81% in predicting the biopsy result.ConclusionThis investigation demonstrates the ease of use with high specificity, high predictive value, and accuracy in identifying prostate cancer in voided urine after digital rectal examination with pressure. The test is likely to have positive impact on clinical practice and advance approaches to the detection of prostate cancer. Further evaluation is warranted.
INTRODUCTION AND OBJECTIVE: Molecular subtyping using the PAM50 classifier has demonstrated associations with disease prognosis and treatment response in breast and prostate cancer. This study aims to evaluate whether there are differences between African American (AA) and white men in the predominant cellular lineage of prostate tumors. METHODS: This is an analysis of a pooled cohort comprised of AA or white men with localized prostate cancer treated with radical prostatectomy from the Fred Hutchinson Cancer Research Center (n [501), Eastern Virginia Medical School (n[124), and The Cancer Genome Atlas (n[472). Using previously described PAM50 methodology, a nearest centroid classifier was applied on each dataset and classified tumors into the following three categories based on gene expression data: (1) luminal A, (2) luminal B, and (3) basal. Kaplan-Meier analysis stratified by race was conducted to estimate progression-free survivalddefined as freedom from biochemical failure, metastases, or prostate cancer mortalitydand prostate cancer specific survival. Statistical significance was calculated using the logrank test.RESULTS: In total, 1,097 unique patients were evaluated. AA men represented 13% (n[143) of the dataset. Luminal A was the most common subtype among AA men (50.4%) compared to white men (38.4%, p < 0.001). Basal subtype (16.8% vs. 22.9%, p [ 0.13) and luminal B (32.9% vs. 38.8%, p [ 0.21) were less common among AA men compared to white men, respectively. On univariable analysis, luminal B was associated with lower rates of progression-free survival and prostate cancer specific survival when compared to luminal A and basal tumors (Figure 1, both p < 0.01). These observations remained consistent when stratified by race. The 10-year cumulative freedom from disease progression was 52%, 78.9%, and 73.1% among AA men and 62.2%, 73.1%, and 71.3% among white men, for luminal B, luminal A, and basal subtypes respectively.CONCLUSIONS: AA men demonstrated a higher proportion of luminal A tumors; however, AA men with luminal B tumors had the worse clinical outcomes in a pooled dataset of prostatectomy patients. Larger cohorts enriched for AA men are needed to confirm these results and better understand cellular lineage of prostate cancer by race and its impact on treatment response and cancer-specific survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.