Predicting the future trajectories of multiple pedestrians in certain scenes has become a key task for ensuring that autonomous vehicles, socially interactive robots and other autonomous mobile platforms can navigate safely. The social interactions between people and the multimodal nature of pedestrian movement make pedestrian trajectory prediction a challenging task. In this paper, the problem is solved using a generative adversarial network (GAN) and a graph attention network (GAT) based on the spatiotemporal interaction information about pedestrians. Our method, STI-GAN, is based on an end-to-end GAN model that simulates the pedestrian distribution to capture the uncertainty of the predicted paths and generate more reasonable future trajectories. The complex interactions between people are modeled by a GAT, and spatiotemporal interaction information is used to improve the performance of trajectory prediction. We verify the robustness and improvement of our framework by evaluating its results on various datasets and comparing them with the results of several existing baselines. Compared with the existing pedestrian trajectory prediction methods, our method reduces the average displacement error (ADE) and final displacement error (FDE) by 21.9% and 23.8% respectively.
Energy management strategies are critical for hybrid electric vehicles (HEVs) to improve fuel economy. To solve the dual-mode HEV energy management problem combined with switching schedule and power distribution, a hierarchical control strategy is proposed in this paper. The mode planning controller is twofold. First, the mode schedule is obtained according to the mode switch map and driving condition, then a switch hunting suppression algorithm is proposed to flatten the mode schedule through eliminating unnecessary switch. The proposed algorithm can reduce switch frequency while fuel consumption remains nearly unchanged. The power distribution controller receives the mode schedule and optimizes power distribution between the engine and battery based on the Radau pseudospectral knotting method (RPKM). Simulations are implemented to verify the effectiveness of the proposed hierarchical control strategy. For the mode planning controller, as the flattening threshold value increases, the fuel consumption remains nearly unchanged, however, the switch frequency decreases significantly. For the power distribution controller, the fuel consumption obtained by RPKM is 4.29% higher than that of DP, while the elapsed time is reduced by 92.53%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.