Herein, we report the soft-templated preparation of mesoporous iron oxide using an asymmetric poly(styrene-b-acrylic acid-b-ethylene glycol) (PS-b-PAA-b-PEG) triblock copolymer. This polymer forms a micelle consisting of a PS core, a PAA shell, and a PEG corona in aqueous solutions, which can serve as a soft template. The mesoporous iron oxide obtained at an optimized calcination temperature of 400 °C exhibited an average pore diameter of 39 nm, with large specific surface area and pore volume of 86.9 m g and 0.218 cm g, respectively. The as-prepared mesoporous iron oxide materials showed intrinsic peroxidase-like activities toward the catalytic oxidation of 3,3',5,5'-tertamethylbenzidine (TMB) in the presence of hydrogen peroxide (HO). This mimetic feature was further exploited to develop a simple colorimetric (naked-eye) and electrochemical assay for the detection of glucose. Both our colorimetric (naked-eye and UV-vis) and electrochemical assays estimated the glucose concentration to be in the linear range from 1.0 μM to 100 μM with a detection limit of 1.0 μM. We envisage that our integrated detection platform for HO and glucose will find a wide range of applications in developing various biosensors in the field of personalized medicine, food-safety detection, environmental-pollution control, and agro-biotechnology.
Natural or synthetic polycations are used as biocides or as drug/gene carriers. Understanding the interactions between these macromolecules and cell membranes at the molecular level is therefore of great importance for the design of effective polymer biocides or biocompatible polycation-based delivery systems. Until now, details of the processes at the interface between polycations and biological systems have not been fully recognized. In this study, we consider the effect of strong polycations with quaternary ammonium groups on the properties of anionic lipid membranes that we use as a model system for protein-free cell membranes. For this purpose, we employed experimental measurements and atomic-scale molecular dynamics (MD) simulations. MD simulations reveal that the polycations are strongly hydrated in the aqueous phase and do not lose the water shell after adsorption at the bilayer surface. As a result of strong hydration, the polymer chains reside at the phospholipid headgroup and do not penetrate to the acyl chain region. The polycation adsorption involves the formation of anionic lipid-rich domains, and the density of anionic lipids in these domains depends on the length of the polycation chain. We observed the accumulation of anionic lipids only in the leaflet interacting with the polymer, which leads to the formation of compositionally asymmetric domains. Asymmetric adsorption of the polycation on only one leaflet of the anionic membrane strongly affects the membrane properties in the polycation–membrane contact areas: (i) anionic lipid accumulates in the region near the adsorbed polymer, (ii) acyl chain ordering and lipid packing are reduced, which results in a decrease in the thickness of the bilayer, and (iii) polycation–anionic membrane interactions are strongly influenced by the presence and concentration of salt. Our results provide an atomic-scale description of the interactions of polycations with anionic lipid bilayers and are fully supported by the experimental data. The outcomes are important for understanding the correlation of the structure of polycations with their activity on biomembranes.
Amphoteric random copolymers P(AMPS/APTAC50), where x = 41, 89, and 117, composed of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and 3-acrylamidopropyltrimethylammonium chloride (APTAC) were prepared via reversible addition-fragmentation chain transfer radical polymerization. P(AMPS/APTAC50) can dissolve in pure water to form small interpolymer aggregates. In aqueous solutions of NaCl, P(AMPS/APTAC50) can dissolve in the unimer state. Amphoteric random copolymer P(AMPS/APTAC50) with high molecular weight was prepared via conventional free-radical polymerization. Although P(AMPS/APTAC50) cannot dissolve in pure water, it can dissolve in aqueous solutions of NaCl. In amphoteric random copolymers with high molecular weight, the possibility of continuous sequences of monomers with the same charge may increase, which may cause strong interactions between polymer chains. When fetal bovine serum (FBS) and polyelectrolytes were mixed in phosphate-buffered saline, the hydrodynamic radius and light-scattering intensity increased. There was no interaction between P(AMPS/APTAC50) and FBS because corresponding increases could not be observed.
An amphoteric random copolymer (P(SA)91) composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S) and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A) was prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP). Furthermore, AMPS and APTAC were polymerized using a P(SA)91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA)91S67) and a cationic diblock copolymer (P(SA)91A88), respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA)91S67 and P(SA)91A88 formed water-soluble polyion complex (PIC) micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA)91S67/P(SA)91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS) in phosphate buffered saline (PBS) were evaluated by changing the hydrodynamic radius (Rh) and light scattering intensity (LSI). Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.