Peripheral nerves are structures that, when damaged, can result in significant motor and sensory disabilities. Several studies have used therapeutic resources with the aim of promoting early nerve regeneration, such as the use of low-power laser. However, this laser therapy does not represent a consensus regarding the methodology, thus yielding controversial conclusions. The objective of our study was to investigate, by functional evaluation, the comparative effects of low-power laser (660 nm and 830 nm) on sciatic nerve regeneration following crushing injuries. Twenty-seven Wistar rats subjected to sciatic nerve injury were divided into three groups: group sham, consisting of rats undergoing simulated irradiation; a group consisting of rats subjected to gallium-aluminum-arsenide (GaAlAs) laser at 660 nm (10 J/cm(2), 30 mW and 0.06 cm(2) beam), and another one consisting of rats subjected to GaAlAs laser at 830 nm (10 J/cm(2), 30 mW and 0.116 cm(2)). Laser was applied to the lesion for 21 days. A sciatic functional index (SFI) was used for functional evaluation prior to surgery and on days 7, 14, and 21 after surgery. Differences in SFI were found between group 660 nm and the other ones at the 14th day. One can observe that laser application at 660 nm with the parameters and methods utilised was effective in promoting early functional recovery, as indicated by the SFI, over the period evaluated.
Test-retest values demonstrated that the equipment we assessed to measure the anteroposterior and left-right force generated reliable pelvic floor muscle strength measurements.
Objective: The purpose of this study was to analyze the influence of blue laser on bacterial growth of the main species that usually colonize cutaneous ulcers, as well as its effect over time following irradiation. Background data: The use of blue laser has been described as an adjuvant therapeutic method to inhibit bacterial growth, but there is no consensus about the best parameters to be used. Methods: Strains of Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 25922 were suspended in saline solution at a concentration of 1.5 · 10 3 colony forming units (CFU)/mL. Next, 300 lL of this suspension was transferred to a microtitulation plate and exposed to a single blue laser irradiation (450 nm) at fluences of 0 (control), 3, 6, 12, 18, and 24 J/cm 2 . Each suspension was spread over the surface of a Petri plate before being incubated at 37°C, and counts of CFU were determined after 24 and 48 h. Results: Blue laser inhibited the growth of S. aureus and P. aeruginosa at fluences > 6 J/cm 2 . On the other hand, E. coli was inhibited at all fluences tested, except at 24 J/cm 2 . Conclusions: Blue laser light was capable of inhibiting bacterial growth at low fluences over time, thus presenting no time-dependent effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.