While all reports on supercapacitors are based on electrodes that are fabricated either using expensive, complex fabrication techniques or multiple steps based synthesis routes, the current work is the first report of one-step hydrothermally grown MoS2 on pencil graphite electrode (PGE) for ultra-high performance supercapacitor application. Field emission scanning electron microscope images revealed MoS2 micro-flower like structure containing interwoven nanosheets whereas chemical characterizations data confirmed the successful growth of few layered (>4 layers) MoS2 on PGE. The performance of the electrode was optimized using various grades of pencil, and it was found that the areal capacitance of the MoS2 grown on 1H PGE(7178.8 mF cm−2) was about 3.4 and 4.1 folds greater than those of the MoS2 grown on 2B, 6H PGE at the same current density respectively. This low cost, binder-free MoS2 based PGE paves a novel way towards the advancement of affordable electrodes for energy storage-conversion and bioanalytical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.