Response latencies provide information about consumers' choice behavior in a conjoint choice experiment. The authors use filtered response latencies to scale the covariance matrix of a multinomial probit model and show that this leads to better model fit and holdout predictions, even if the response latencies in the holdout task are not used. The authors provide an empirical application along with a tentative explanation for the findings of the effect of response latencies.
Experimental conjoint choice analysis is among the most frequently used methods for measuring and analyzing consumer preferences. The data from such experiments have been typically analyzed with the Multinomial Logit (MNL) model. However, there are several problems associated with the standard MNL model because it is based on the assumption that the error terms of the underlying random utilities are independent across alternatives, choice sets, and subjects. The Multinomial Probit model (MNP) is well known to alleviate this assumption of independence of the error terms. Accounting for covariances in utilities in modeling choice experiments with the MNP is important because variation of the coefficients in the choice model may occur due to context effects. Previous research has shown that subjects' utilities for alternatives depend on the choice context, that is, the particular set of alternatives evaluated. Simonson and Tversky's tradeoff contrast principle describes the effect of the choice context on attribute importance and patterns of choice. They distinguish , which are caused by the alternatives in the offered set only, and , which are due to the influence of alternatives previously considered in choice experiments. These effects are hypothesized to cause correlations in the utilities of alternatives within and across choice sets, respectively. The purpose of this study is to develop an MNP model for conjoint choice experiments. This model is important for a more detailed study of choice patterns in those experiments. In developing the MNP model for conjoint choice experiments, several hurdles need to be taken related to the identification of the model and to the prediction of holdout profiles. To overcome those problems, we propose a random coefficients (RC) model that assumes a multivariate normal distribution of the regression coefficients with a rank one factor structure on the covariance matrix of these regression coefficients. The parameters in this covariance matrix can be used to identify which attributes and levels of attributes are potentional sources of dependencies between the alternatives and choice sets in a conjoint choice experiment. We present several versions of this model. Moreover, for each of these models we allow utilities to be either correlated or independent across choice sets. The Independent Probit (IP) model is used as a benchmark. Given the dimensionality of the integrations involved in computing the choice probabilities, the models are estimated with simulated likelihood, where simulations are used to approximate the integrals involved in the choice probabilities. We apply and compare the models in two conjoint choice experiments. In both applications, the random coefficients MNP model that allows choices in different choice sets to be correlated (RC) displays superior fit and predictive validity compared with all other models. We hypothesize that the difference in fit occurs because the RC model accommodates correlations among choice sets that are caused by background contrast...
Conjoint choice designs are frequently applied in practice, and often a base alternative is added to the design. When such a 'no-choice' base alternative is present in conjoint choice experiments a constant term should be added to the design ('X'-) matrix with attribute dummies when effects type and/or linear coding is used for the attribute levels. Not including such a constant may result in a much lower model and predictive fit and even biased estimates for the (linear) attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.